Измерение температуры основано на физических свойствах тел, связанных определенной зависимостью с температурой. Наиболее широко используются следующие свойства: тепловое расширение тел, газов, паров и жидкостей; электрическое сопротивление проводников; термоэлектродвижущая сила; энергия излучения нагретых тел.

При наладочных работах по вентиляции температура газов и жидкости в пределах от —40 до +60° С измеряется тарированными жидкостными термометрами с ценой деления не более 0,5° С. При температурах свыше 60° С допускается применять термометры с ценой деления 1°С. Температуру воздуха и газов при составлении балансов по теплу и влаге, а также при лабораторных исследованиях измеряют тарированными термометрами с ценой деления не более 0,2° С.

Жидкостные стеклянные термометры. Принцип действия термометров основан на объемном расширении жидкости, заключенной в закрытом стеклянном резервуаре. Резервуар соединяется с капилляром, имеющим малый внутренний диаметр. При нагревании резервуара жидкость увеличивается в объеме и поднимается вверх по капилляру. По высоте столбика жидкости в капилляре можно судить об измеряемой температуре. Чем тоньше капилляр, по сравнению с резервуаром, тем чувствительнее термометр.

Рабочей жидкостью в термометрах служат обычно ртуть и органические жидкости. Ртутно-стеклянные термометры используются для измерения температуры в пределах от —30 до +500°С Термометры с органическими жидкостями называются низкотемпературными, в них применяют этиловый спирт до —130°С; толуол до —90° С; петролейный эфир до —130° С и пентан до —190° С.

Ртутные стеклянные термометры разделяют на палочные и с вложенной стеклянной шкалой. Палочный термометр представляет собой толстостенную капиллярную трубку из термостойкого стекла или кварца, на который нанесены деления шкалы. При наблюдении сквозь толщу стекла капилляр представляется значительно увеличенным и столбик жидкости хорошо виден, несмотря на очень малый действительный размер капилляра. Резервуар со ртутью у палочных термометров имеет наружный диаметр, одинаковый с наружным диаметром капиллярной трубки. Палочные термометры обладают высокой точностью и применяются в основном для лабораторных измерений.

Стеклянные термометры с вложенной шкалой отличаются тем, что капиллярная трубка имеет небольшой наружный диаметр, а деления шкалы нанесены на плоскую пластинку из молочного стекла, расположенную сзади капиллярной трубки. Шкала и капилляр заключены в стеклянную оболочку, припаянную к резервуару.

Термометр с ртутным заполнением может быть снабжен электрическими контактами, которые замыкаются ртутными столбиками. Такие термометры называются контактными или термосигнализаторами. Один из контактов впаян в нижней точке капилляра и всегда соприкасается с ртутью. Этот контакт обычно выполнен из платины, так как платина имеет такой же температурный коэффициент, что и термометрическое стекло.

Другие контакты впаивают в капилляр на определенных отметках шкалы или контакт изготавливают подвижным. В качестве подвижного рабочего контакта термосигнализатора применяют тонкую вольфрамовую проволоку и располагают ее внутри капилляра. Контакт перемещается с помощью передвигающейся по винту овальной гайки, заключенной в овальную трубку. Винт вращается подковообразным постоянным магнитом, который установлен на колпачке в верхней части термометра.

Шкала термометра справедлива, когда глубина его погружения равна высоте столбика измерительной жидкости. При этом жидкость, находящаяся в резервуаре и капилляре, имеет температуру измеряемой среды. Если столбик жидкости выступает над уровнем погружения термометра, то температура выступающей части будет отличаться от температуры измеряемой среды: Следовательно, выступающий столбик дополнительно удлиняется или укорачивается в зависимости от температуры окружающей среды. Поправку к показаниям термометра на температуру выступающего столбика подсчитывают по формуле

Метастатический термометр с меняющимися пределами шкалы предназначен для измерения температуры с повышенной точностью. Измерение производится в интервале, не превышающем 5° С в любом участке шкалы от —20 до +150° С. Чтобы изменить пределы измерения отливают часть ртути из капилляра в сифонообразный вспомогательный резервуар.

Термометр относится к числу стеклянных ртутных термометров со вложенной шкальной пластиной.

Термометр имеет рабочую шкалу 5° С с ценой деления 0,01° С и вспомогательную шкалу от —20 до +150° С с ценой деления 5° С. На вспомогательной шкале устанавливают нижний предел температуры, от которого производят отсчет по рабочей шкале.

Основная допустимая погрешность термометра ±0,015° С. Температуру измеряют, погрузив термометр в измеряемую среду на постоянную величину до начала делений шкалы.

Стержневой термометр-дилатометр состоит из трубки и стержня, изготовленных из разных материалов. Стержень расположен внутри трубки. Один конец его жестко закреплен ко дну трубки. Трубка и стержень удлиняются при нагревании на различную длину. Изменение соотношения их длины характеризует температуру нагрева.

Стержневые термометры применяют главным образом в качестве сигнализаторов и регуляторов температуры, а также в системах пневмоавтоматики. При заданных значениях температуры они замыкают или размыкают электрические контакты, включаемые в электрические цепи.

Биметаллический термометр имеет чувствительный элемент в виде плоской или спиральной пружины, спаянной из двух разнородных пластин. Пластины изготавливают из металлов с разными коэффициентами температурного расширения. При нагревании обе пластины удлиняются и пружина изгибается в сторону металла с меньшим температурным коэффициентом. По величине изгиба судят о температуре нагрева. Биметаллический термометр применен в термографе.

Термограф М-16А предназначен для непрерывного измерения и регистрации температуры воздуха. Чувствительной частью прибора является изогнутая биметаллическая пластина 9, изменяющая свою кривизну в зависимости от температуры. Один конец пластины закреплен, а другой — системой рычагов связан со стрелкой 4. На конце стрелки, установлено перо 10 в виде ковшичка, в которое заливаются специальные медленно сохнущие чернила. Перо вычерчивает кривую изменения температуры на диаграммной ленте, закрепленной на барабане 2 с помощью лентодержателя 3.

Барабан вращается под действием помещенного в него часового механизма. В зависимости от модификации прибора барабан делает 1 оборот в сутки (суточный термограф) или в неделю (недельный). Часовой механизм заводится ключом.

В зависимости от применяемой шкалы на диаграммной ленте прибором измеряют температуру в следующих диапазонах: от —40 до +30° С; от —30 до +40° С; от —20 до +50° С. Прибор регулируется винтом 8, перемещающим закрепленный конец чувствительной пластины. При этом перо устанавливают на нужное деление выбранной шкалы, соответствующее температуре измеряемого воздуха в данный момент.

В приборе предусмотрен отметчик времени. Он дает возможность, не открывая крышки корпуса прибора, отмечать время наблюдений на диаграммной ленте. При нажатии на отметчик времени перо поднимается и делает вертикальную отсечку.

Чтобы отвести стрелку с пером от барабана часового механизма для прекращения записи и снять барабан при смене диаграммной ленты, поворачивают рычаг 5 до упора в направлении на себя. Опустить перо на поверхность барабана можно поворотом этого рычага до упора в обратном направлении. Основная плата прибора И, на которой смонтированы все узлы и механизмы, прикреплена к основанию корпуса 1. Чувствительная часть термографа защищена от механических повреждений защитными дугами 7 и крышкой 6.

Правила измерения температуры

Для измерения температуры воздуха в рабочей зоне помещения термометры устанавливают по возможности на высоте 1,5 м от пола, вдали от холодных наружных ограждений и оборудования, излучающего тепло, и вне зоны действия приточных струй н солнечных лучей. Резервуары термометров должны свободно омываться воздухом. Измерять температуру воздуха вблизи горячих или холодных поверхностей следует аспирационными психрометрами, резервуары термометров которых защищены от воздействия тепловой радиации.

Температура наружного воздуха измеряется термометрами, которые должны быть защищены от непосредственного воздействия солнечных лучей и атмосферных осадков. Температуру воздуха в воздуховодах рекомендуется измерять термометрами, вводимыми внутрь воздуховодов через специальное отверстие или лючки. При разрежении в воздуховоде необходимо исключить подсос воздуха через отверстия или лючки.

Места измерения температуры воздуха в воздуховодах выбирают с учетом следующих требований:

термометры не должны подвергаться вибрации и тряске;

на показания термометров не должно оказывать влияние лучистое тепло от теплообменников и должно быть исключено попадание капель воды или другой жидкости на термометр при замерах после камер орошения.

Показания термометров следует снимать не ранее чем через 5 мин после их установки, причем не следует дотрагиваться до резервуара термометра руками, дышать на него, освещать спичками. При необходимости наблюдения за температурой воздуха в помещении в течение суток или более длительного времени следует использовать самопишущие приборы — термографы, электронные самопишущие многоточечные и одноточечные с термометрами сопротивления.

Температура поверхностей измеряется термощупами или поверхностными термопарами.

Полупроводниковые термометры типа ЭТП-IA, ЭТП-2А и ЭТП-М предназначенные для измерения температуры в производственных и лабораторных условиях, разработаны и изготавливаются экспериментальной базой Уральского ПромстройНИИпроекта

Приборы ЭТП-IA и ЭТП-2А работают с датчиками трех типов

Датчик I служит для измерения температуры поверхностей металлических строительных конструкций и ограждений, нагревателей отопительно-вентиляционных систем, трубопроводов котельных и холодильных установок, корпусов и деталей электромашин и другого технологического оборудования. Терморезистор 1 датчика плотно обмотан неизолированной медной проволокой 2, припаян к контактному колпачку 3 и помещен в колодку 4, которая поджимается пружиной 5, что обеспечивает надежный тепловой контакт с измеряемой поверхностью.

Читайте также:  Как разобрать корпус внешнего жесткого диска

Датчик II предназначен для измерения температуры неагрессивных жидкостей, растворов, сыпучих материалов, влажных газовых сред. Датчик состоит из герметичной трубки 6, внутри которой помещен терморезистор 1.

Датчик III применяется для измерения температуры неагрессивных газовых и воздушных сред нормальной влажности. Датчик состоит из перфорированной трубки 7 с терморезистором 1, расположенным внутри.

В приборе ЭТП-М применен один датчик с тремя сменными насадками, позволяющими производить все вышеуказанные измерения.

Все элементы и узлы приборов смонтированы на жесткой панели и помещены в защитный корпус с крышкой, в которой размещены датчики. В специально предусмотренной кассете в корпусе прибора устанавливается батарея питания.

На лицевой панели приборов расположены стрелочный индикатор, переключатель поддиапазонов, переключатель рода работы, переменный резистор установки рабочего напряжения, выключатель питающего напряжения, разъем для включения датчиков (в приборах ЭТП-1А и ЭТП-2А).

Порядок работы с приборами. Вначале подключают датчик и располагают прибор горизонтально. Механическим корректором стрелочного индикатора устанавливают стрелку на нулевую отметку шкалы. Переключатель поддиапазонов ставят на требуемый поддиапазон измерения. Переключатель рода работы включают в положение «контроль» и подключают питание прибора. Ручкой «регулирование напряжения» устанавливают стрелку индикатора на максимальное деление шкалы (настройку производят после каждого переключения поддиапазонов и при измерении периодически контролируют). После этого переключатель рода работы устанавливают в положение «измерение». По шкале прибора снимают показание при установившемся значении тока измерителя. В приборах, шкала измерителя которых градуирована в мка, температуру определяют по зависимости прилагаемой к прибору в виде графики. Датчик прибора при измерениях устанавливают заранее или перед включением прибора. Поверхности в местах измерений температуры выбирают ровные, сухие, очищенные от грязи, краски и т. п. с минимальным радиусом закругления (до 40 мм).

Датчик типа I прижимают плотно, без сдвигов, вибраций и ударов и так, чтобы его ручка была перпендикулярна измеряемой поверхности. Для обеспечения надежного теплового контакта датчика с поверхностью перед измерением температуры медный его колпачок смазывают техническим вазелином или маслом.

Датчик типа II погружают в жидкость или сыпучую среду на полную глубину, сохраняя расстояние между низом ручки и уровнем жидкости не менее 5 мм. При окружающих температурах ниже 10° С измерения проводят дистанционно, чтобы сохранить температуру прибора в пределах 10—35° С.

Аспирационный электротермометр конструкции ГПИ Проектпромвентиляция предназначен для дистанционного измерения температуры воздуха в диапазоне от —15 до +125° С. Электротермометр состоит из измерительного прибора и датчика. Датчик соединен с измерительным прибором соединительным шнуром. Чувствительным элементом 1 датчика температуры является медная проволока диаметром 0,05 мм, спирально намотанная на каркас из натянутых нитей. Сопротивление чувствительного элемента при температуре 0° С составляет 100 Ом. Чувствительный элемент закрыт внутренним 2 и наружным 3 цилиндрическими экранами. Экраны изготовлены из листового металла с последующим никелированием и полировкой.

Из окружающей среды воздух просасывается электровентилятором 5 через щели 4 наружного и внутреннего экранов и попадает на датчик, изменяя его температуру и сопротивление. Сопротивление датчика измеряется неуравновешенным мостом постоянного тока.

Прибор имеет три поддиапазона измерения температуры: от —25 до +25° С; от 25 до 75° С и от 75 до 125° С, которые переключаются переключателем п. rij (рис. 11.28). Питание измерительного моста осуществляется от одной батареи КБС-Л-0,5, электродвигатель вентилятора питается от двух батарей того же типа, соединенных параллельно или трех элементов типа «Марс», соединенных последовательно.

Для подготовки электротермометра к работе датчик подсоединяют к измерительному прибору и корректируют питающее напряжение моста, для чего:

переключатель диапазонов Hi устанавливают в положение II поддиапазона, а переключатель П2 — в положение К (коррекция);

переменным резистором R& стрелку измерительного прибора совмещают с красной риской на шкале показывающего прибора. Коррекцию питающего напряжения проводят через 30—35 мин работы прибора.

Для измерения температуры воздуха датчик располагают в точке измерения, затем выключателем Вк! включают электродвигатель вентилятора, переключатель Пг переводят в положение «И» (измерение). Если стрелка показывающего прибора «зашкаливает» влево, переключатель переводят на более низкий поддиапазон измерения, если вправо — на ботее высокий. Когда стрелка перестанет двигаться, т. е. чувствительный элемент датчика примет температуру окружающего его воздуха, записывают показания прибора в относительных делениях. Затем по тарировочному графику или таблице переводят деления в абсолютное значение температуры.

Метеорологи в своей профессиональной деятельности для построения карты температуры воздуха России и в мире используют ртутные, спиртовые или электронные термометры для измерения температуры воздуха.

Пределы измерений приборов составляют:

  • для ртутных -39 — +750 С;
  • для электронных: -50 — +100 С;
  • для спиртовых: -70 — +120 С.

К каждому точному термометрическому оборудованию должен быть приложен его паспорт, в котором указаны поправки, какие нужно вносить в наблюдаемые отсчеты.

Проверка вышеописанных устройств (это касается не только термометров для измерения температуры воздуха (электронных, спиртовых и т.д.), но и других метеорологических приборов) производится в России в одном из 86 Центров стандартизации и метрологии. Эталоном служит водородный газовый термометр.

Шкала термометра: Реомюра, Цельсия и Фаренгейта

Как известно, существуют разные виды термометрических приборов в зависимости от используемых в них шкалах температуры:

  • шкала Реомюра (R) разделена на 80 градусов (0 — точка замерзания воды, 80 — точка кипения воды);
  • шкала Цельсия (С) разделена на 100 градусов (0 — точка замерзания воды, 100 — точка кипения воды);
  • шкала Фаренгейта (F) разделена на 212 градусов (32 — точка замерзания воды, 212 — точка кипения воды).

Для перевода градусов одной шкалы в градусы другой пользуются следующими формулами:

Температурам выше нуля придают значение положительных величин, а ниже — отрицательных.

Абсолютная шкала температур Кельвина обозначается буквой К:

Виды термометров

Необходимо помнить, что термометр тогда лишь показывает истинную температуру воздуха, когда на него не действует радиация солнца, небесного свода или какого-либо иного источника. Ввиду этого для получения точных значений следует пользоваться прибором, шарик которого защищен от влияния радиации. В качестве примера можно назвать сухой термометр аспирационного психрометра, а также электронный термометр для измерения температуры воздуха, так как в нем отсутствуют элементы, на которые может повлиять радиация (но он может быть чувствителен к электромагнитным излучениям). Для этой же цели служит и парный термометр, устройство и принцип работы которого мы рассмотрим ниже.

Опуская описание обыкновенного ртутного прибора, известного из школьных курсов физики, переходим к описанию максимальных и минимальных термометров, применяемых для определения температурных максимумов и минимумов за определенный период наблюдения и используемых, в частности, для построения карты температуры воздуха России и в мире. Кроме этого, ниже мы рассмотрим принцип работы термографа, а также парного и электронного термометра для измерения температуры воздуха.

Максимальные термометры

Максимальные термометры (рисунок выше «A») изготовляются разными способами и их существует два основных вида:

  1. В некоторых из них со дна резервуара прибора поднимается стеклянный стерженек, конец которого настолько узкий, что способен без особых трудностей входить в капиллярную трубку прибора; ртуть при повышении температуры воздуха может подниматься по незаполненному пространству между стерженьком и капилляром; при снижении температуры ртуть не может опускаться назад в резервуар, в виду сопротивления, возникающего в силу трения ртути о стенку капиллярной трубки и стерженька. Благодаря этому ртуть остается в трубке на прежней высоте, показывая максимальную температуру. Энергичными встряхиваниями удается перевести ртуть из трубки в резервуар.
  2. В других максимальных термометрах в капиллярной трубке прибора над ртутью помещается стальной штифтик (указатель), снабженный по краям головками. Ртуть, поднимаясь, проталкивает указатель вверх; когда же ртуть, вследствие снижения температуры, опускается, указатель не идет за ней, а остается на месте. Таким образом, по высоте стояния нижней границы указателя можно видеть, каков был температурный максимум за данный период наблюдения. Для снижения указателя и возвращения его в исходное положение применяют магнит.

Минимальный термометр

Минимальный термометр (рисунок выше «B») — это ничто иное, как спиртовой термометрический прибор, в котором резервуару придана форма вилки. Внутри капиллярной трубки помещается подвижный стеклянный штифтик с головками по концам. Своеобразная форма резервуара объясняется тем, что спирт значительно менее теплопроводен, нежели ртуть, и потому резервуару придают форму, при которой контактная поверхность с воздухом наиболее большая. До наблюдения резервуар минимального термометра наклоняется вверх и удерживается в таком положении до тех пор, пока штифтик не прикоснется к поверхности спирта. Далее оставляют прибор в горизонтальном положении. Когда повышается температура воздуха, спирт начинает свое перемещение в капиллярной трубке вокруг штифтика, причем последний остается на месте; при снижении температуры и укорочении спиртового столбика штифтик увлекается мениском спирта и фиксируется на температурном минимуме за данный период наблюдения. Отсчет производится соответственно концу указателя.

Читайте также:  Выбор циркуляционного насоса для отопления частного дома

Термограф

Термограф служит для автоматической регистрации температурного движения за определенный период наблюдения и используется для создания в мире и, в частности, в России карты температуры воздуха. Он состоит из плоской металлической трубки «А», наполненной алкоголем (вместо такой трубки, наполненной алкоголем, применяют также биметаллические пластинки). При температурных колебаниях объем алкоголя изменяется, благодаря чему изменяется изогнутость трубки. Эти изменения кривизны трубки при помощи системы рычажков приводят к подъему или опусканию рычажка «а» соответственно подъему или снижению температуры. На конец рычажка «а» насажен писчик «b» (небольшой, заканчивающийся пишущим краем челнок, заполняемый невысыхающими чернилами). В приборе имеется барабан, приводимый во вращение посредством часового механизма. На барабан надевается бумажная лента с нанесенной на ней сеткой. По оси абсцисс отложено время, по оси ординат нанесены температуры.

В зависимости от быстроты вращения барабана можно получить запись температурного движения за сутки, неделю, декаду и т.п. Именно поэтому при составлении карты температуры в России воздуха метеорологи применяют термограф.

При использовании на метеостанции для измерения температуры воздуха термометрических приборов электронного типа (описаны ниже) необходимость в применении термографа полностью отпадает, так как данные с устройства поступают в базу данных компьютера, который в свою очередь с легкостью создает температурные графики за любой период наблюдения.

Электронный термометр для измерения температуры воздуха

В последнее время в метеорологии стали применяться термометры для измерения температуры воздуха электронного типа. Их внедрения в практику обусловлено точностью измерений, а также возможностью получения данных дистанционно, что особенно важно в условиях приоритетной задачи правительства РФ по освоению Арктики и облегчает составление температурных карт воздуха в России и мире.

Парный термометр

Парный термометр состоит из двух рядом помещенных термометров: поверхность резервуара одного них (t1) посеребрена и потому отражает почти целиком падающий на нее поток лучистой энергии; поверхность резервуара другого прибора (t2) почернена и потому поглощает почти целиком падающий на нее поток лучистой энергии.

Температура воздуха определяется по указанной выше формуле.

Температурой называется статистическая величина, характеризующая тепловое состояние тела и пропорциональная средней кинематической энергии молекул тела. За единицу температуры принимают кельвин (К). Температура может быть также представлена в градусах Цельсия (°С). Нуль шкалы Кельвина равен абсолютному нулю, поэтому все температуры по этой шкале положительные. Связь между температурами t по Цельсию и T по Кельвину определяется следующим уравнением:

Измерить температуру непосредственно, как, например, линейные размеры, невозможно. Поэтому температуру определяют косвенно — по изменению физических свойств различных тел, получивших название термометрических.

Измерение температуры связано с преобразованием сигнала измерительной информации (температуры) в какое-либо свойство, связанное с температурой.

Для практических целей, связанных с измерением температуры, принята Международная температурная шкала (МТШ-90) (рис. 2.89), которая является обязательной для всех метрологических органов. Она основывается на ряде воспроизводимых состояний равновесия (реперных точек) некоторых веществ, которым присвоены определенные значения температуры.

Рис. 2.89. Международная Температурная шкала (МТШ-90) с реперными точками (подчеркнуты)

Для измерения температуры наибольшее распространение получили следующие методы, основанные:

– на тепловом расширении жидких, газообразных и твердых тел (термомеханический эффект);

– изменении давления внутри замкнутого объема при изменении температуры (манометрические);

– изменении электрического сопротивления тел при изменении температуры (терморезисторы);

– использовании электромагнитного излучения нагретых тел.

Приборы, предназначенные для измерения температуры, называются термометрами. Они подразделяются на две большие группы: контактные и бесконтактные.

Контактное измерение температуры.

Термометры расширения нашли широкое распространение в практике контактных измерений температуры. Основные типы механических контактных термометров, их метрологические характеристики, преимущества, недостатки и область применения представлены в табл. 2.18.

Таблица 2.18. Основные метрологические характеристики механических контактных термометров

Наименование прибора

Тип прибора

Пределы измерений,°С

Погрешность измерения,%

Инерцион ность

Преимущества

Недостатки

Область применения

Металли ческие термометры расширения

Дилато метриче ские

Дешевые, надежные, малое время срабатывания; очень большие перестановочные усилия

Малая точность, высокая инерционность

Дешевые, надежные; большие перестановочные усилия

Оценочный контроль температуры, температурные выключатели

Жидкостные термометры

Малая механическая прочность, нет дистанцион- ности

Лабораторные термометры, бытовые термометры

Дешевые, надежные, не требуют внешних источников энергии; дистан- ционность до 50 м, большие перестановочные усилия

Температура соединительного капилляра влияет на показания прибора

Промышленные термометры, термореле

Конденса ционные манометри ческие

Нелинейная статическая характеристика

Газовые термометры

С гелиевым заполнением

Принцип измерения соответствует определению термодинамической температуры

Малая механическая прочность, большая трудоемкость процесса измерения

Поверочные (калибровочные) работы

Жидкостные стеклянные термометры конструктивно подразделяются на палочные (рис. 2.90, а) и технические со вложенной шкалой (рис. 2.90, б). Принцип их действия основан на зависимости между температурой и объемом термометрической жидкости, заключенной в стеклянной оболочке. Жидкостный термометр состоит из стеклянной оболочки 1, капиллярной трубки 3, запасного резервуара 4 и шкалы 2. Термометрическая жидкость заполняет резервуар и часть капиллярной трубки. Свободное пространство в капилляре заполняется инертным газом или из него удаляется воздух.

Рис. 2.90. Жидкостные стеклянные термометры:

а — палочный; б — технический со вложенной шкалой; 1 — стеклянная оболочка; 2 — шкала; 3 — капиллярная трубка; 4 — запасной резервуар

В качестве термометрической жидкости применяют органические заполнители: толуол, этиловый спирт, керосин, пентан. Наиболее широкое распространение получили термометры с ртутным наполнением. Это объясняется свойствами ртути находиться в жидком состоянии в широком диапазоне температур и не смачивать стекло, что позволяет использовать капилляры с небольшим диаметром канала (до 0,1 мм) и обеспечивать высокую точность измерения. Так, ртутные образцовые термометры 1-го разряда имеют погрешность 0,002. 2°С.

Органические заполнители характеризуются более низкой температурой применения, меньшей стоимостью, большей погрешностью измерения.

Стеклянные термометры в зависимости от назначения и области применения подразделяются на образцовые, лабораторные, технические, бытовые, метеорологические.

Лабораторные термометры обеспечивают измерение в интервале температур 0. 500°С, который разбит на четыре диапазона, что позволяет получить погрешность измерений, не превышающую ±0,01 °С (0. 60 °С); ±0,02 °С (55. 155 °С); ±0,05°С (140. 300 °С) и ±0,1 °С (300. 500°С).

В качестве технических применяют только термометры со вложенной шкалой, которые имеют две модификации: прямые и угловые. Допускаемая погрешность обычно равна цене деления. При стационарной эксплуатации в различных точках технологических агрегатов термометры устанавливают в специальных металлических защитных чехлах (кожухах).

Для обеспечения задач позиционного регулирования и сигнализации в лабораторных и промышленных установках применяют специальные электроконтактные технические термометры двух типов:

1) с постоянными впаянными контактами, которые обеспечивают замыкание и размыкание электрических цепей при одной, двух или трех заранее заданных температурах;

2) с одним подвижным контактом (перемещается внутри капилляра с помощью магнита) и вторым неподвижным, впаянным в капилляр, что обеспечивает замыкание и размыкание электрической цепи при любом значении выбранной температуры.

Перемещающаяся в капилляре ртуть размыкает или замыкает цепи между контактами, к которым подводится напряжение постоянного или переменного тока и нагрузка на которые не должна превышать 0,5 мА при напряжении не более 0,3 В.

Биметаллические и дилатометрические термометры основаны на свойстве твердых тел в различной степени изменять свои линейные размеры при изменении их температуры.

В основном металлы и их сплавы относятся к материалам с высоким температурным коэффициентом линейного расширения. Так, для латуни он равен (18,3. 23,6)*10 -6 °С -1 , для никелевой стали 20*10 -6 °С -1 . В то же время есть сплавы, имеющие низкий коэффициент линейного расширения: сплав инвар — 0,9*10 -6 °С -1 , плавленый кварц — 0,55*10 -6 °С -1 .

На рис. 2.91, а представлена конструкция биметаллического термометра, в котором в качестве термочувствительного элемента используется двухслойная пластинка, состоящая из металлов с существенно различными коэффициентами линейного расширения: латуни 1 и инвара 2. При увеличении температуры свободный конец пластины будет изгибаться в сторону металла с меньшим коэффициентом, по величине этого перемещения судят о температуре.

Данный тип устройств часто используется как термореле в системах сигнализации и автоматического регулирования, а также в качестве температурных компенсаторов в измерительных устройствах, например в радиационных пирометрах, манометрических термометрах и т. п.

На рис. 2.91, б приведена конструкция чувствительного элемента пневматического дилатометрического преобразователя температуры.

Рис. 2.91. Термометры:

а — биметаллический: 1 — латунь; 2 — инвар; б — дилатометрический: 1 — корпус; 2 — стержень; 3 — трубка; 4 — шарик; 5 — толкатель; 6 — пружина; 7 — преобразователь

В корпусе 1, изготовленном из латуни (нержавеющей стали) расположены трубка 3 и стержень 2, выполненный из инвара (кварца). Стержень 2 через трубку 3 и толкатель 5 с помощью пружины 6 постоянно поджимается к нижнему концу корпуса 1. Шарик 4 исключает появление люфтов между стержнем и компенсационной трубкой, которая выполнена также из латуни и предназначена для исключения температурной погрешности при установке на объектах с различной толщиной тепловой изоляции. Изменение разности удлинений корпуса 1 и стержня 2, пропорциональное изменению температуры измеряемой среды, трансформируется в пневматический сигнал в преобразователе 7, усиливается и поступает на регистрирующий прибор.

Читайте также:  Видеодомофон камеры схемы подключения

Дилатометрические преобразователи выпускают и с электрическим выходным сигналом. Класс точности устройств 1,5 и 2,5 с диапазоном измеряемых температур от -30 до +1000 °С.

Жидкостные манометрические термометры (рис. 2.92) основаны на использовании зависимости между температурой и давлением термометрического вещества (газа, жидкости), заполняющего герметически замкнутую термосистему термометра. Термосистема состоит из термобаллона 4, капилляра 5 и манометрической одно- или многовитковой пружины 6. Капилляр 5 соединяет термобаллон с неподвижным концом манометрической пружины. Подвижный конец пружины запаян и через шарнирное соединение 7, поводок 3, сектор 2 связан со стрелкой прибора 1.

Рис. 2.92. Конструкция манометрического термометра:

1 — стрелка; 2 — сектор; 3 — поводок; 4 — термобаллон; 5— капилляр; 6 — пружина; 7 — шарнирное соединение

При изменении температуры среды изменяется давление термометрического вещества в замкнутом пространстве, в результате чего чувствительный элемент (манометрическая пружина) деформируется и ее свободный конец перемещается. Данное перемещение преобразуется в поворот регистрирующей стрелки относительно шкалы прибора.

В зависимости от термометрического вещества манометрические термометры подразделяются на газовые, конденсационные и жидкостные.

В газовых термометрах термобаллон, капилляр и манометрическая пружина заполняются каким-либо инертным газом (азотом, гелием и др.). Диапазон измерения весьма широк и лежит в пределах от критической температуры газа (азот — 147 °С, гелий — 267 °С) до температуры, определяемой теплостойкостью материала термобаллона.

В конденсационных термометрах насыщенные пары некоторых низкокипящих жидкостей (ацетон, метилхлорид, этилхлорид) меняют давление при изменении температуры. Диапазон измерения этих приборов от 0 до +400 °С при погрешности измерений ±1 %.

В жидкостных термометрах термосистема заполнена хорошо расширяющейся жидкостью (ртутью, керосином, лигроином и др.). Диапазон измерения этих приборов от -30 до +600 °С при погрешности измерений ±1 %.

На показания манометрических термометров значительное влияние оказывают внешние условия: изменения температуры окружающего воздуха, различная высота расположения термобаллона и пружины, колебания атмосферного давления.

Манометрические термометры имеют ограниченную длину линии связи от термобаллона к показывающему прибору, большую инерционность и динамическую погрешность.

Класс точности манометрических термометров 1,0; 1,5; 2,5 и 4,0 при работе в интервале температур окружающего воздуха от 5 до 50 °С и относительной влажности до 80 %.

Манометрические термометры применяют для измерения температуры охлаждающей воды, воздуха, жидкого и газообразного топлива, на установках для заправки и т. п.

Термометры сопротивления.

Термометр сопротивления состоит из чувствительного элемента в виде терморезистора, защитного чехла и соединительной головки.

Принцип действия чувствительного элемента основан на использовании зависимости электрического сопротивления вещества от температуры. В качестве материалов для их изготовления используют чистые металлы: платину, медь, никель и полупроводники. Платина является основным материалом для изготовления термометров сопротивления. В качестве чувствительного элемента в полупроводниковых термометрах сопротивления используют германий, окиси меди и марганца, титана и магния.

Основные метрологические характеристики термометров сопротивления, их принципиальные схемы, преимущества, недостатки и область применения представлены в табл. 2.19.

Таблица 2.19. Основные метрологические характеристики электрических контактных термометров

Таблица 2.19. Основные метрологические характеристики электрических контактных термометров

Характеристики

Термометры сопротивления

Термоэлектрические термометры

Пределы измерений, °С

Погрешность измерения, %

Инерционность

Преимущества

Высокая точность, линейная статическая характеристика

Высокая чувствительность, возможны измерения в точке

Дешевые, хорошая линейность статической характеристики

Прочность, малая тепловая инерция, линейная статическая характеристика

Недостатки

Невозможно измерение температуры в точке

Нелинейная статическая характеристика, большой разброс параметров, низкая стабильность параметров во времени

Большая тепловая инерция

Область применения

Энергетика, непрерывные технологические процессы в химии, пищевая промышленность

Энергетика, технологические процессы в химии, производство искусственных материалов, медицина

Энергетика, непрерывные производства, пищевая промышленность

Энергетика, непрерывные производства, химия, медицина, строительство, производство искусственных материалов

Для решения различных задач термометры сопротивления подразделяются на эталонные, образцовые и рабочие, которые, в свою очередь, подразделяются на лабораторные и технические.

Эталонные термометры сопротивления предназначены для воспроизведения и передачи шкалы МПТШ в интервале 13,81. . 903,89 К. В качестве эталонных, образцовых и лабораторных приборов повышенной точности применяют платиновые термометры сопротивления.

Технические термометры сопротивления в зависимости от конструкции подразделяются: на погружаемые, поверхностные и комнатные; защищенные и не защищенные от действия агрессивной среды; стационарные и переносные; термометры 1-го, 2-го и 3-го класса точности и т.д.

Одна из конструкций промышленных термометров сопротивления, используемых для измерения температур жидких и газообразных сред, представлена на рис. 2.93, а. Термометр состоит из чувствительного элемента 5, расположенного в стальном защитном кожухе 3, на котором приварен штуцер 2. Провода 9, армированные фарфоровыми бусами 4, соединяют выводы чувствительного элемента 5 с клеммной колодкой б, находящейся в корпусе головки 1. Сверху головка 1 закрыта крышкой 10, снизу имеется сальниковый ввод 7, через который осуществляется подвод монтажного кабеля 8.

Чувствительный элемент термометра сопротивления (рис. 2.93, б) выполнен из металлической тонкой проволоки толщиной 0,03. 0,1 мм с безындукционной каркасной или бескаркасной намоткой.

Рис. 2.93. Термометр сопротивления:

а — конструкция термометра: 1 — корпус головки; 2 — штуцер; 3 — защитный кожух; 4 — фарфоровые бусы; 5 — чувствительный элемент; 6 — клеммная колодка; 7 — сальниковый ввод; 8 — монтажный кабель; 9 — провода; 70 — крышка; б — конструкция чувствительного элемента термометра: 1 — глазурь; 2 — пространство; 3 — каркас; 4 — платиновые спирали; 5 — выводы

В качестве каркаса для платиновых термометров применяют плавленный кварц и керамику на основе окиси алюминия. В каналах каркаса 3 расположены четыре (или две) последовательно соединенные платиновые спирали 4. К верхним концам спиралей припаяны выводы 5, выполненные из платины или сплава иридия с радием. Пространство 2 между спиралями и каркасом заполнено порошком окиси алюминия. Крепление спиралей и выводов в каркасе производится глазурью 1.

При применении термометров сопротивления о температуре можно судить по изменению электрического сопротивления его чувствительного элемента, падению напряжения на нем при постоянном токе или значению тока при постоянном напряжении.

Наибольшее распространение получила первая схема, когда изменение сопротивления служит мерой температуры (рис. 2.94). В этом случае терморезистор 1 включают в одну из диагоналей моста последовательно с регулировочным резистором Rv, служащим для приведения к определенному значению сопротивления подводящих проводов. Показания гальванометра 3, включенного в диагональ моста, зависят также от напряжения питания моста, для поддержания постоянства которого в цепь питания включен регулировочный резистор.

Рис. 2.94. Схема включения термометра сопротивления:

1 — терморезистор (термометр сопротивления); 2 — уравнительный резистор RA; 3 — гальванометр; 4 — измерительный мост с резисторами Rv, R2, R3, Я4, RA; 5 — источник питания; 6 — регулировочный резистор Rv

Термоэлектрические термометры состоят из термопары, защитного чехла и соединительной головки, они основаны на термоэлектрических свойствах чувствительного элемента.

Сущность термоэлектрического метода заключается в возникновении электродвижущей силы в спае двух разнородных проводников (например, хромель — копель), температура которого отличается от температуры вторых выводов. Для получения зависимости термоЭДС от одной температуры t2 необходимо температуру t1 поддерживать на постоянном уровне, обычно при 0 или +20 °С. Спай, помещаемый в измеряемую среду, называют горячим, или рабочим, концом термопары, а спай, температуру которого поддерживают постоянной, — холодным, или свободным, концом.

Для увеличения чувствительности термоэлектрического метода измерения температуры в ряде случаев применяют термобатарею: несколько последовательно включенных термопар, рабочие концы которых находятся при температуре t2, а свободные — при известной и постоянной температуре t1.

Основные метрологические характеристики термоэлектрических термометров, их принципиальные схемы, преимущества, недостатки и область применения см. в табл. 2.19.

В качестве термопар (ТП) наиболее часто применяют комбинации материалов, имеющих высокое значение развиваемой термо- ЭДС, стабильность характеристик при различных температурах, воспроизводимость и линейную зависимость термоЭДС от температуры, простоту технологической обработки и получения спая, а именно: хромель-копелевые (TBP)[AJ], хромель-алюмелевые (TXK)[L], платинородий-платиновые (ТХА)[К], вольфрам-рениевые (Tnn)[S] и др. В квадратных скобках приведены условные обозначения номинальных статистических характеристик преобразования. Наиболее точной является термопара ТПП, которая используется в качестве рабочих эталонов и образцовых термометров 1-го, 2-го и 3-го разряда.

Основные характеристики термоэлектрических термометров представлены в табл. 2.20.

Таблица 2.20. Основные характеристики термоэлектрических термометров

Термопара

Градуировка

Химический состав термоэлектрода

Пределы применения, C

Пределы допускаемой погрешности, С, при температуре, С

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *