При проектировании электрических сетей в квартирах или частных домах в обязательном порядке выполняется расчет сечения проводов и кабелей. Для проведения вычислений используются такие показатели, как значение потребляемой мощности и сила тока, которая будет проходить по сети. Сопротивление не принимается в расчет из-за малой протяженности кабельных линий. Однако этот показатель необходим при большой длине ЛЭП и перепадах напряжения на различных участках. Особое значение имеет сопротивление медного провода. Такие провода все чаще используются в современных сетях, поэтому их физические свойства должны обязательно учитываться при проектировании.

Понятия и значение сопротивления

Электрическое сопротивление материалов широко используется и учитывается в электротехнике. Данная величина позволяет установить основные параметры проводов и кабелей, особенно при скрытом способе их прокладки. В первую очередь устанавливается точная длина проложенной линии и материал, использованный для производства провода. Вычислив первоначальные данные, вполне возможно определить диаметр и сечение измеряемого кабеля.

По сравнению с обычной электрической проводкой, в электронике параметрам сопротивления придается решающее значение. Оно рассматривается и сопоставляется в совокупности с другими показателями, присутствующими в электронных схемах. В этих случаях неправильно подобранное сопротивление провода, может вызвать сбой в работе всех элементов системы. Такое может произойти, если для подключения к блоку питания компьютера воспользоваться слишком тонким проводом. Произойдет незначительное снижение напряжения в проводнике, что вызовет некорректную работу компьютера.

Сопротивление в медном проводе зависит от многих факторов, и в первую очередь от физических свойств самого материала. Кроме того, учитывается диаметр или сечение проводника, определяемые по формуле или специальной таблице.

Таблица

На сопротивление медного проводника оказывают влияние несколько дополнительных физических величин. Прежде всего должна учитываться температура окружающей среды. Всем известно, что при повышении температуры проводника, наблюдается рост его сопротивления. Одновременно с этим происходит снижение силы тока из-за обратно пропорциональной зависимости обеих величин. В первую очередь это касается металлов с положительным температурным коэффициентом. Примером отрицательного коэффициента является вольфрамовый сплав, применяющийся в лампах накаливания. В этом сплаве сила тока не снижается даже при очень высоком нагреве.

Как рассчитать сопротивление

Для расчетов сопротивления медного провода существует несколько способов. К наиболее простым относится табличный вариант, где указаны взаимосвязанные параметры. Поэтому, кроме сопротивления, определяется сила тока, диаметр или сечение провода.

Во втором случае используются разнообразные онлайн-калькуляторы. В каждый из них вставляется набор физических величин медного провода, с помощью которых получаются точные результаты. В большинстве подобных калькуляторов используется удельное сопротивление меди в размере 0,0172 Ом*мм 2 /м. В некоторых случаях такое усредненное значение может повлиять на точность вычислений.

Наиболее сложным вариантом считаются ручные вычисления, с использованием формулы: R = p x L/S, в которой р – удельное сопротивление меди, L – длина проводника и S – сечение этого проводника. Следует отметить, что сопротивление медного провода таблица определяет, как одно из наиболее низких. Более низким значением обладает лишь серебро.

Данная статья поможет вам рассчитать сопротивление провода. Расчет можно выполнить по формулам, либо по данным таблицы "сопротивление проводов", которая приведена ниже.

То как влияет материал проводника учитывается при помощи удельного сопротивления, которое принято обозначать буквой греческого алфавита ρ и являет собой сопротивление проводника сечением 1 мм 2 и длинной 1 м. У серебра наименьшее удельное сопротивление ρ = 0,016 Ом•мм 2 /м. Ниже приводятся значения удельного сопротивления для нескольких проводников:

  • Сопротивление провода для серебра – 0,016,
  • Сопротивление провода для свинеца – 0,21,
  • Сопротивление провода для меди – 0,017,
  • Сопротивление провода для никелина – 0,42,
  • Сопротивление провода для люминия – 0,026,
  • Сопротивление провода для манганина – 0,42,
  • Сопротивление провода для вольфрама – 0,055,
  • Сопротивление провода для константана – 0,5,
  • Сопротивление провода для цинка – 0,06,
  • Сопротивление провода для ртути – 0,96,
  • Сопротивление провода для латуни – 0,07,
  • Сопротивление провода для нихрома – 1,05,
  • Сопротивление провода для стали – 0,1,
  • Сопротивление провода для фехрали -1,2,
  • Сопротивление провода для бронзы фосфористой – 0,11,
  • Сопротивление провода для хромаля – 1,45

Так как в состав сплавов входят разные количества примесей, то удельное сопротивление может изменятся.

Сопротивление провода рассчитывается по формуле,которая приведена ниже:

  • R — сопротивление,
  • Ом; ρ — удельное сопротивление, (Ом•мм 2 )/м;
  • l — длина провода, м;
  • s — площадь сечения провода, мм 2 .

Площадь сечения рассчитывается так:

S=(π?d^2)/4=0.78?d^2≈0.8?d^2

  • где d – это диаметр провода.

Измерить диаметр провода можно микрометром либо штангенциркулем,но если их нету под рукой,то можно плотно намотать на ручку (карандаш) около 20 витков провода, затем измерить длину намотанного провода и разделить на количество витков.

Для определения длинны провода,которая нужна для достижения необходимого сопротивления,можно использовать формулу:

1.Если данные для провода отсутствуют в таблице,то берется некоторое среднее значение.Как пример ,провод из никелина который имеет диаметр 0,18 мм площадь сечения равна приблизительно 0,025 мм2, сопротивление одного метра 18 Ом, а допустимый ток 0,075 А.

2.Данные последнего столбца,для другой плотности тока, необходимо изменить. Например при плотности тока 6 А/мм2, значение необходимо увеличить вдвое.

Пример 1. Давайте найдем сопротивление 30 м медного провода диаметром 0,1 мм.

Читайте также:  Козырёк над крыльцом своими руками из дерева

Решение. С помощью таблицы берем сопротивление 1 м медного провода, которое равно 2,2 Ом. Значит, сопротивление 30 м провода будет R = 30•2,2 = 66 Ом.

Расчет по формулам будет выглядеть так: площадь сечения : s= 0,78•0,12 = 0,0078 мм2. Поскольку удельное сопротивление меди ρ = 0,017 (Ом•мм2)/м, то получим R = 0,017•30/0,0078 = 65,50м.

Пример 2. Сколько провода из манганина у которого диаметр 0,5 мм нужно чтобы изготовить реостат, сопротивлением 40 Ом?

Решение. По таблице выбираем сопротивление 1 м этого провода: R= 2,12 Ом: Чтобы изготовить реостат сопротивлением 40 Ом, нужен провод, длина которого l= 40/2,12=18,9 м.

Расчет по формулам будет выглядеть так. Площадь сечения провода s= 0,78•0,52 = 0,195 мм 2 . Длина провода l = 0,195•40/0,42 = 18,6 м.

В связи с тем, что существует два типа электрических сопротивлений –

В связи с электромагнитными явлениями, возникающими в проводниках при прохождении через него переменного тока в них возникает два важных для их электротехнических свойств физических явления.

Два последних явления делают неэффективным применение проводников радиусом больше характерной глубины проникновения электрического тока в проводник. Эффективный диаметр проводников (2RБхар): 50Гц -7 Ом. Используя микроомметры, можно определить качество электрических контактов, сопротивление электрических шин, обмоток трансформаторов, электродвигателей и генераторов, наличие дефектов и инородного металла в слитках (например, сопротивление слитка чистого золота вдвое ниже позолоченного слитка вольфрама).

Для расчета длины провода, его диаметра и необходимого электрического сопротивления, необходимо знать удельное сопротивление проводников ρ.

В международной системе единиц удельное сопротивление ρ выражается формулой:

Оно означает: электрическое сопротивление 1 метра провода (в Омах), сечением 1 мм 2 , при температуре 20 градусов по Цельсию.

Таблица удельных сопротивлений проводников

Материал проводника Удельное сопротивление ρ в
Серебро
Медь
Золото
Латунь
Алюминий
Натрий
Иридий
Вольфрам
Цинк
Молибден
Никель
Бронза
Железо
Сталь
Олово
Свинец
Никелин (сплав меди, никеля и цинка)
Манганин (сплав меди, никеля и марганца)
Константан (сплав меди, никеля и алюминия)
Титан
Ртуть
Нихром (сплав никеля, хрома, железа и марганца)
Фехраль
Висмут
Хромаль
0,015
0,0175
0,023
0,025. 0,108
0,028
0,047
0,0474
0,05
0,054
0,059
0,087
0,095. 0,1
0,1
0,103. 0,137
0,12
0,22
0,42
0,43. 0,51
0,5
0,6
0,94
1,05. 1,4
1,15. 1,35
1,2
1,3. 1,5

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм 2 обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм 2 . Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм 2 обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм 2 .

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм 2 .

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм 2 .

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм 2 . Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм 2 и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Если при температуре t сопротивление проводника равно r, а при температуре t равно rt, то температурный коэффициент сопротивления

Читайте также:  Спирея розовая посадка и уход фото

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Значения температурного коэффициента для некоторых металлов

Металл α
Серебро
Медь
Железо
Вольфрам
Платина
0,0035
0,0040
0,0066
0,0045
0,0032
Ртуть
Никелин
Константан
Нихром
Манганин
0,0090
0,0003
0,000005
0,00016
0,00005

Из формулы температурного коэффициента сопротивления определим rt:

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Материалы высокой проводимости

К наиболее широкораспрстраненным материалам высокой проводимости следует отнести медь и алюминий (Сверхпроводящие материалы, имеющие типичное сопротивление в 10 -20 раз ниже обычных проводящих материалов (металлов) рассматриваются в разделе Сверхпроводимость).

Преимущества меди, обеспечивающие ей широкое применение в качестве проводникового материала, следующие:

  1. малое удельное сопротивление;
  2. достаточно высокая механическая прочность;
  3. удовлетворительная в большинстве случаев применения стойкость по отношению к коррозии;
  4. хорошая обрабатываемость: медь прокатывается в листы, ленты и протягивается в проволоку, толщина которой может быть доведена до тысячных долей миллиметра;
  5. относительная легкость пайки и сварки.

Медь получают чаще всего путем переработки сульфидных руд. После ряда плавок руды и обжигов с интенсивным дутьем медь, предназначенная для электротехнических целей, обязательно проходит процесс электролитической очистки.

В качестве проводникового материала чаще всего используется медь марок М1 и М0. Медь марки М1 содержит 99.9% Cu, а в общем количестве примесей (0.1%) кислорода должно быть не более 0,08%. Присутствие в меди кислорода ухудшает ее механические свойства. Лучшими механическими свойствами обладает медь марки М0, в которой содержится не более 0.05% примесей, в том числе не свыше 0.02% кислорода.

Медь является сравнительно дорогим и дефицитным материалом, поэтому она все шире заменяется другими металлами, особенно алюминием.

В отдельных случаях применяются сплавы меди с оловом, кремнием, фосфором, бериллием, хромом, магнием, кадмием. Такие сплавы, носящие название бронз, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь.

Алюминий

Алюминий является вторым по значению после меди проводниковым материалом. Это важнейший представитель так называемых легких металлов: плотность литого алюминия около 2.6, а прокатанного – 2.7 Мг/м 3 . Т.о., алюминий примерно в 3.5 раза легче меди. Температурный коэффициент расширения, удельная теплоемкость и теплота плавления алюминия больше, чем меди. Вследствие высоких значений удельной теплоемкости и теплоты плавления для нагрева алюминия до температуры плавления и перевода в расплавленное состояние требуется большая затрата тепла, чем для нагрева и расплавления такого же количества меди, хотя температура плавления алюминия ниже, чем меди.

Алюминий обладает пониженными по сравнению с медью свойствами – как механическими, так и электрическими. При одинаковом сечении и длине электрическое сопротивление алюминиевого провода в 1.63 раза больше, чем медного. Весьма важно, что алюминий менее дефицитен, чем медь.

Для электротехнических целей используют алюминий, содержащий не более 0.5% примесей, марки А1. Еще более чистый алюминий марки АВ00 (не более 0.03% примесей) применяют для изготовления алюминиевой фольги, электродов и корпусов электролитических конденсаторов. Алюминий наивысшей чистоты АВ0000 имеет содержание примесей не более 0ю004%. Добавки Ni, Si, Zn или Fe при содержании их 0.5% снижают γ отожженного алюминия не более, чем на 2-3%. Более заметное действие оказывают примеси Cu, Ag и Mg, при том же массовом содержании снижающие γ алюминия на 5-10%. Очень сильно снижают электропроводность алюминия Ti и Mn.

Алюминий весьма активно окисляется и покрывается тонкой оксидной пленкой с большим электрическим сопротивлением. Эта пленка предохраняет металл от дальнейшей коррозии.

Алюминиевые сплавы обладают повышенной механической прочностью. Примером такого сплава является альдрей, содержащий 0.3-0.5% Mg, 0.4-0.7% Si и 0.2-0.3% Fe. В альдрее образуется соединение Mg2Si, которое сообщает высокие механические свойства сплаву.

Читайте также:  Как закоптить мясо в домашней коптильне

Железо и сталь

Железо (сталь) как наиболее дешевый и доступный металл, обладающий к тому же высокой механической прочностью, представляет большой интерес для использования в качестве проводникового материала. Однако даже чистое железо имеет значительно более высокое сравнительно с медью и алюминием удельное сопротивление; ρ стали, т.е. железа с примесью углерода и других элементов, еще выше. Обычная сталь обладает малой стойкостью коррозии: даже при нормальной температуре, особенно в условиях повышенной влажности, она быстро ржавеет; при повышении температуры скорость коррозии резко возрастает. Поэтому поверхность стальных проводов должна быть защищена слоем более стойкого материала. Обычно для этой цели применяют покрытие цинком.

В ряде случаев для уменьшения расхода цветных металлов применяют так называемый биметалл. Это сталь, покрытая снаружи слоем меди, причем оба металла соединены друг с другом прочно и непрерывно.

Натрий

Весьма перспективным проводниковым материалом является металлический натрий. Натрий может быть получен электролизом расплавленного хлористого натрия NaCl в практически неограниченных количествах. Из сравнения свойств натрия со свойствами других проводниковых металлов видно, что удельное сопротивление натрия примерно в 2.8 раза больше ρ меди и в 1.7 раз больше ρ алюминия, но благодаря чрезвычайно малой плотности натрия (плотность его почти в 9 раз меньше плотности меди), провод из натрия при данной проводимости на единицу длины должен быть значительно легче, чем провод из любого другого металла. Однако натрий чрезвычайно активен химически (он интенсивно окисляется на воздухе, бурно реагирует с водой), почему натриевый провод должен быть защищен герметизирующей оболочкой. Оболочка должна придавать проводу необходимую механическую прочность, так как натрий весьма мягок и имеет малый предел прочности при деформациях.

Литература по удельному сопротивлению проводников

  1. Кузнецов М. И., "Основы электротехники" – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.
  2. Бачелис Д. С., Белоруссов Н. И., Саакян А. Е. Электрические кабели, провода и шнуры. Справочник. — М.: Энергия, 1971.
  3. Гершун А. Л. Кабель // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  4. Р. Лакерник, Д. Шарле. От меди к стеклу // Наука и жизнь. — 1986. — Вып. 08. — С. 50—54, 2-3 стр. цветной вкладки.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории – измените факт" (В другом варианте " – Факт не соответствует теории? – Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" – это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Понятие "мысленный эксперимент" придумано специально спекулянтами – релятивистами для шулерской подмены реальной проверки мысли на практике (эксперимента) своим "честным словом". Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА
Рыцари теории эфира
01.10.2019 – 05:20: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ – Upbringing, Inlightening, Education ->
[center][Youtube]69vJGqDENq4[/Youtube][/center]
[center]14:36[/center]
Osievskii Global News
29 сент. Отправлено 05:20, 01.10.2019 г.’ target=_top>Просвещение от Вячеслава Осиевского – Карим_Хайдаров.
30.09.2019 – 12:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ – Upbringing, Inlightening, Education ->
[center][Ok]376309070[/Ok][/center]
[center]11:03[/center] Отправлено 12:51, 30.09.2019 г.’ target=_top>Просвещение от Дэйвида Дюка – Карим_Хайдаров.
30.09.2019 – 11:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ – Upbringing, Inlightening, Education ->
[center][Youtube]VVQv1EzDTtY[/Youtube][/center]
[center]10:43[/center]

интервью Раввина Борода https://cursorinfo.co.il/all-news/rav.
мой телеграмм https://t.me/peshekhonovandrei
мой твиттер https://twitter.com/Andrey54708595
мой инстаграм https://www.instagram.com/andreipeshekhonow/

[b]Мой комментарий:
Андрей спрашивает: Краснодарская синагога – это что, военный объект?
– Да, военный, потому что имеет разрешение от Росатома на манипуляции с радиоактивными веществами, а также иными веществами, опасными в отношении массового поражения. Именно это было выявлено группой краснодарцев во главе с Мариной Мелиховой.

[center][Youtube]CLegyQkMkyw[/Youtube][/center]
[center]10:22 [/center]

Доминико Риккарди: Россию ждёт страшное будущее (хотелки ЦРУ):
https://tainy.net/22686-predskazaniya-dominika-rikardi-o-budushhem-rossii-sdelannye-v-2000-godu.html

Завещание Алена Даллеса / Разработка ЦРУ (запрещено к ознакомлению Роскомнадзором = Жид-над-рус-надзором)
http://av-inf.blogspot.com/2013/12/dalles.html

[center][b]Сон разума народа России [/center]

[center][Youtube]CLegyQkMkyw[/Youtube][/center]
[center]10:22 [/center]

Доминико Риккарди: Россию ждёт страшное будущее (хотелки ЦРУ):
https://tainy.net/22686-predskazaniya-dominika-rikardi-o-budushhem-rossii-sdelannye-v-2000-godu.html

Завещание Алена Даллеса / Разработка ЦРУ (запрещено к ознакомлению Роскомнадзором = Жид-над-рус-надзором)
http://av-inf.blogspot.com/2013/12/dalles.html

[center][b]Сон разума народа России [/center]

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *