Электромагнитная волна представляет собой процесс последовательного, взаимосвязанного изменения векторов напряжённости электрического и магнитного полей, направленных перпендикулярно лучу распространения волны, при котором изменение электрического поля вызывает изменения магнитного поля, которые, в свою очередь, вызывают изменения электрического поля.
Волна (волновой процесс) – процесс распространения колебаний в сплошной среде. При распростаранении волны частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояния колебательного движения и его энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества
Электромагнитные волны возникают всегда, когда в пространстве есть изменяющееся электрическое поле. Такое изменяющееся электрическое поле вызвано, чаще всего, перемещением заряженных частиц, и как частный случай такого перемещения, переменным электрическим током.
Электромагнитное поле представляет собой взаимосвязанные колебания электрического (Е) и магнитного (В) полей. Распространение единого электромагнитного поля в пространстве осуществляется посредством электромагнитных волн.
Электромагнитная волна – электромагнитные колебания, распространяющиеся в пространстве и переносящие энергию
Особенности электромагнитных волн, законы их возбуждения и распространения описываются уравнениями Максвелла (которые в данном курсе не рассматриваются). Если в какой-то области пространства существуют электрические заряды и токи, то изменение их со временем приводит к излучению электромагнитных волн. Описание их распространения аналогично описанию механических волн.
Если среда однородна и волна распространяется вдоль оси Х со скоростью v, то электрическая (Е) и магнитная (В) составляющие поля в каждой точке среды изменяются по гармоническому закону с одинаковой круговой частотой (ω) и в одинаковой фазе (уравнение плоской волны):
где х – координата точки, а t – время.
Векторы В и Е взаимно перпендикулярны, и каждый из них перпендикулярен направлению распространения волны (ось Х). Поэтому электромагнитные волны являются поперечными
Синусоидальная (гармоническая) электромагнитная волна. Векторы , и взаимно перпендикулярны
1) Электромагнитные волны распространяются в веществе с конечной скоростью
Здесь ε и μ – диэлектрическая и магнитная проницаемости вещества, ε и μ – электрическая и магнитная постоянные: ε = 8,85419·10 –12 Ф/м, μ = 1,25664·10 –6 Гн/м.
Длина волны λ в синусоидальной волне свявзана со скоростью υ распространения волны соотношением λ = υT = υ / f, где f – частота колебаний электромагнитного поля,T = 1 / f.
2) Скорость электромагнитных волн в вакууме (ε = μ = 1):
Скорость c распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных.
Вывод Максвелла о конечной скорости распространения электромагнитных волн находился в противоречии с принятой в то время теорией дальнодействия, в которой скорость распространения электрического и магнитного полей принималась бесконечно большой. Поэтому теорию Максвелла называют теорией близкодействия.
В электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Эти процессы идут одновременно, и электрическое и магнитное поля выступают как равноправные «партнеры». Поэтому объемные плотности электрической и магнитной энергии равны друг другу: wэ = wм.
Отсюда следует, что в электромагнитной волне модули индукции магнитного поля и напряженности электрического поля в каждой точке пространства связаны соотношением
4. Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии. Если выделить площадку S (рис. 2.6.3), ориентированную перпендикулярно направлению распространения волны, то за малое время Δt через площадку протечет энергия ΔWэм, равная
ΔWэм = (wэ + wм)υSΔt. |
Плотностью потока или интенсивностью I называют электромагнитную энергию, переносимую волной за единицу времени через поверхность единичной площади:
Подставляя сюда выражения для wэ, wм и υ, можно получить:
Поток энергии в электромагнитной волне можно задавать с помощью вектора направление которого совпадает с направлением распространения волны, а модуль равен EB / μμ. Этот вектор называют вектором Пойнтинга.
В синусоидальной (гармонической) волне в вакууме среднее значение Iср плотности потока электромагнитной энергии равно
где E – амплитуда колебаний напряженности электрического поля.
Плотность потока энергии в СИ измеряется в ваттах на квадратный метр (Вт/м 2 ).
5. Из теории Максвелла следует, что электромагнитные волны должны оказывать давление на поглощающее или отражающее тело. Давление электромагнитного излучения объясняется тем, что под действием электрического поля волны в веществе возникают слабые токи, то есть упорядоченное движение заряженных частиц. На эти токи действует сила Ампера со стороны магнитного поля волны, направленная в толщу вещества. Эта сила и создает результирующее давление. Обычно давление электромагнитного излучения ничтожно мало. Так, например, давление солнечного излучения, приходящего на Землю, на абсолютно поглощающую поверхность составляет примерно 5 мкПа. Первые эксперименты по определению давления излучения на отражающие и поглощающие тела, подтвердившие вывод теории Максвелла, были выполнены П. Н. Лебедевым в 1900 г. Опыты Лебедева имели огромное значение для утверждения электромагнитной теории Максвелла.
Существование давления электромагнитных волн позволяет сделать вывод о том, что электромагнитному полю присущ механический импульс. Импульс электромагнитного поля в единичном объеме выражается соотношением
где wэм – объемная плотность электромагнитной энергии, c – скорость распространения волн в вакууме. Наличие электромагнитного импульса позволяет ввести понятие электромагнитной массы.
Для поля в единичном объеме
Это соотношение между массой и энергией электромагнитного поля в единичном объеме является универсальным законом природы. Согласно специальной теории относительности, оно справедливо для любых тел независимо от их природы и внутреннего строения.
Таким образом, электромагнитное поле обладает всеми признаками материальных тел – энергией, конечной скоростью распространения, импульсом, массой. Это говорит о том, что электромагнитное поле является одной из форм существования материи.
6. Первое экспериментальное подтверждение электромагнитной теории Максвелла было дано примерно через 15 лет после создания теории в опытах Г. Герца (1888 г.). Герц не только экспериментально доказал существование электромагнитных волн, но впервые начал изучать их свойства – поглощение и преломление в разных средах, отражение от металлических поверхностей и т. п. Ему удалось измерить на опыте длину волны и скорость распространения электромагнитных волн, которая оказалась равной скорости света.
Опыты Герца сыграли решающую роль для доказательства и признания электромагнитной теории Максвелла. Через семь лет после этих опытов электромагнитные волны нашли применение в беспроводной связи (А. С. Попов, 1895 г.).
7. Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами. Цепи постоянного тока, в которых носители заряда движутся с неизменной скоростью, не являются источником электромагнитных волн. В современной радиотехнике излучение электромагнитных волн производится с помощью антенн различных конструкций, в которых возбуждаются быстропеременные токи.
Простейшей системой, излучающей электромагнитные волны, является небольшой по размерам электрический диполь, дипольный момент p (t) которого быстро изменяется во времени.
Такой элементарный диполь называют диполем Герца. В радиотехнике диполь Герца эквивалентен небольшой антенне, размер которой много меньше длины волны λ (рис. 2.6.4).
Рисунок 2.6.4. Элементарный диполь, совершающий гармонические колебания |
Рис. 2.6.5 дает представление о структуре электромагнитной волны, излучаемой таким диполем.
Рисунок 2.6.5. Излучение элементарного диполя |
Следует обратить внимание на то, что максимальный поток электромагнитной энергии излучается в плоскости, перпендикулярной оси диполя. Вдоль своей оси диполь не излучает энергии. Герц использовал элементарный диполь в качестве излучающей и приемной антенн при экспериментальном доказательстве существования электромагнитных волн.
В 1864 году Джеймс Клерк Максвелл предсказал возможность существования в пространстве электромагнитных волн. Это утверждение он выдвинул основываясь на выводах, вытекающих из анализа всех известных к тому моменту экспериментальных данных касательно электричества и магнетизма.
Максвелл математически объединил законы электродинамики, связав электрические и магнитные явления, и таким образом пришел к выводу, что изменяющиеся с течением времени электрическое и магнитное поля порождают друг друга.
Изначально он сделал акцент на том факте, что взаимосвязь магнитных и электрических явлений не симметрична, и ввел термин «вихревое электрическое поле», предложив свое, по-настоящему новое объяснение явления электромагнитной индукции, открытого Фарадеем: «всякое изменение магнитного поля приводит к появлению в окружающем пространстве вихревого электрического поля, имеющего замкнутые силовые линии».
Справедливым, по мнению Максвелла, было и обратное утверждение, что «изменяющееся электрическое поле рождает магнитное поле в окружающем пространстве», однако это утверждение оставалось поначалу только гипотезой.
Максвелл записал систему математических уравнений, которые непротиворечиво описали законы взаимных превращений магнитного и электрического полей, эти уравнения стали впоследствии основными уравнениями электродинамики, и стали называться «уравнения Максвелла» в честь записавшего их великого ученого. Гипотеза Максвелла, с опорой на написанные уравнения, возымела несколько чрезвычайно важных для науки и техники выводов, которые приведены ниже.
Электромагнитные волны действительно существуют
В пространстве могут существовать поперечные электромагнитные волны, представляющие собой распространяющееся с течением времени электромагнитное поле. На то что волны являются поперечными, указывает тот факт, что векторы магнитной индукции В и напряженности электрического поля Е взаимно перпендикулярны и оба лежат в плоскости перпендикулярной направлению распространения электромагнитной волны.
Электромагнитные волны распространяются с конечной скоростью
Скорость распространения электромагнитных волн в веществе конечна, и определяется она электрическими и магнитными свойствами вещества, по которому волна распространяется. Длина синусоидальной волны λ при этом связана со скоростью υ определенным точным соотношением λ = υ / f, и зависит от частоты f колебаний поля. Скорость c электромагнитной волны в вакууме — одна из фундаментальных физических констант — скорость света в вакууме.
Поскольку Максвелл заявлял о конечности скорости распространения электромагнитной волны, то это создало противоречие между его гипотезой и принятой в те времена теорией дальнодействия, согласно которой скорость распространения волн должна была бы быть бесконечной. Теорию Максвелла назвали поэтому теорией близкодействия.
Электромагнитная волна — это электрическое и магнитное поля, взаимно превращающиеся друг в друга
В электромагнитной волне одновременно происходит превращение электрического и магнитного полей друг в друга, следовательно объемные плотности магнитной энергии и электрической энергии равны между собой. Следовательно справедливо утверждение, что модули напряженности электрического поля и индукции магнитного поля связаны между собой в каждой точке пространства следующим соотношением:
Электромагнитные волны переносят энергию
Электромагнитная волна в процессе своего распространения создает поток электромагнитной энергии, и если рассмотреть площадку в плоскости перпендикулярной направлению распространения волны, то за малое время через нее переместится определенное количество электромагнитной энергии. Плотность потока электромагнитной энергии — это количество энергии, переносимой электромагнитной волной через поверхность единичной площади за единицу времени. Подставив значения скорости, а также магнитной и электрической энергии, можно получить выражение для плотности потока через величины Е и В.
Вектор Пойнтинга — вектор потока энергии волны
Поскольку направление распространения энергии волны совпадает с направлением скорости распространения волны, то поток энергии, распространяющийся в электромагнитной волне можно задать при помощи вектора, направленного так же, как и скорость распространения волны. Этот вектор получил название «вектор Пойнтинга» – в честь британского физика Генри Пойнтинга, разработавшего в 1884 году теорию распространения потока энергии электромагнитного поля. Плотность потока энергии волны измеряется в Вт/кв.м.
Электромагнитные волны давят на отражающие или поглощающие их тела
При действии электрического поля на вещество, в нем появляются небольшие токи, представляющие собой упорядоченное движение электрически заряженных частиц. Эти токи в магнитном поле электромагнитной волны подвергаются действию силы Ампера, которая направлена вглубь вещества. Сила Ампера и порождает в итоге давление.
Это явление позже, в 1900 году, было исследовано и подтверждено опытным путем русским физиком Петром Николаевичем Лебедевым, экспериментальная работа которого явилась очень важной для подтверждения теории электромагнетизма Максвелла и ее принятия и утверждения в дальнейшем.
Тот факт, что электромагнитная волна оказывает давление, позволяет судить о наличии у электромагнитного поля механического импульса, который можно выразить для единичного объема через объемную плотность электромагнитной энергии и скорость распространения волны в вакууме:
Поскольку импульс связан с движением массы, можно ввести и такое понятие как электромагнитная масса, и тогда для единичного объема это соотношение (в соответствии с СТО) примет характер универсального закона природы, и окажется справедливым для любых материальных тел, вне зависимости от формы материи. А электромагнитное поле тогда сродни материальному телу — обладает энергией W, массой m, импульсом p и конечной скоростью распространения v. То есть электромагнитное поле — это одна из форм реально существующей в природе материи.
Окончательное подтверждение теории Максвелла
Впервые в 1888 году Генрих Герц подтвердил экспериментально электромагнитную теорию Максвелла. Он опытным путем доказал реальность электромагнитных волн и изучил такие их свойства как преломление и поглощение в различных средах, а также отражение волн от металлических поверхностей.
Герц измерил длину волны электромагнитного излучения, и показал, что скорость распространения электромагнитной волны равна скорости света. Экспериментальная работа Герца стала последним шагом к признанию электромагнитной теории Максвелла. Семь лет спустя, в 1895 году, русский физик Александр Степанович Попов применил электромагнитные волны для создания беспроводной связи.
Электромагнитные волны возбуждаются только ускоренно движущимися зарядами
В цепях постоянного тока заряды движутся с постоянной скоростью, и электромагнитные волны в этом случае в пространство не излучаются. Чтобы имело место излучение, необходимо воспользоваться антенной, в которой возбуждались бы переменные токи, то есть токи, быстро изменяющие свое направление.
В простейшем виде для излучения электромагнитных волн пригоден электрический диполь небольшого размера, у которого бы быстро изменялся во времени дипольный момент. Именно такой диполь называют сегодня «диполь Герца», размер которого в несколько раз меньше длины излучаемой им волны.
При излучении диполем Герца, максимальный поток электромагнитной энергии приходится на плоскость, перпендикулярную оси диполя. Вдоль оси диполя излучения электромагнитной энергии не происходит. В важнейших экспериментах Герца были использованы элементарные диполи как для излучения, так и для приема электромагнитных волн, так и было доказано существование электромагнитных волн.
Из закона Фарадея следует, что любое изменение потока магнитной индукции приводит к возникновению ЭДС индукции и индукционнго тока (при наличии замкнутого контура). Выходит, что сторонние силы действуют на неподвижные заряды (значит, это не сила Лоренца) и заставляют их начать движение.
Максвелл высказал гипотезу, что переменное магнитное поле порождает в окружающем пространстве электрическое поле, которое в свою очередь является причиной возникновения электрического тока. Таким образом, наличие проводящего контура является всего лишь индикатором, обнаруживающим переменное электрическое поле. Такое электрическое поле называется вихревым .
Свойства | Вихревое электрическое поле | Электростатическое поле |
Источники поля |
Переменное магнитное поле
Начинаются на положительных зарядах, заканчиваются на отрицательных
Непотенциально – работа поля по замкнутому контуру равна ЭДС индукции
Потенциально – работа поля по замкнутому контуру равна нулю
Электромагнитное поле – совокупность порождающих друг друга электрических и магнитных полей. Переменные электрические и магнитные поля существуют одновременно и образуют единое электромагнитное поле. Оно материально:
- проявляет себя в действии как на покоящиеся, так и на движущиеся заряды;
- распространяется с большой, но конечной скоростью;
- существует независимо от нашей воли и желаний.
При скорости заряда, равной нулю, существует только электрическое поле. При постоянной скорости заряда возникает электромагнитное поле.
При ускоренном движении заряда происходит излучение электромагнитной волны, которая распространяется в пространстве с конечной скоростью.
Электромагнитные волны — это такие электромагнитные колебания, которые распространяются в пространстве с конечной скоростью, которая зависит от свойства среды. Иными словами можно сказать, что электромагнитной волной называют распространяющееся в пространстве электромагнитное поле или электромагнитное возмущение.
Свойства электромагнитных волн
1. Электромагнитные волны поперечны – векторы E и B перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны
2. Электромагнитные волны распространяются в веществе с конечной скоростью
Величина, показывающая, во сколько раз скорость электромагнитной волны в веществе меньше скорости в вакууме, называется абсолютным показателем преломления среды
3. В электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Эти процессы идут одновременно. Поэтому равны объемные плотности энергии
Следовательно, модуль вектора индукции магнитного поля и модуль напряженности электрического поля связаны соотношением
4. Электромагнитные волны переносят энергию
Плотностью потока или интенсивностью I называют электромагнитную энергию, переносимую волной за единицу времени через поверхность единичной площади:
Экспериментальное обнаружение электромагнитных волн
Для создания электромагнитной волны необходимо создать в пространстве систему быстро меняющихся электрических и магнитных полей. Чем быстрее меняется со временем магнитная индукция, тем больше напряженность возникающего электрического поля (и наоборот). Колебания достаточно высокой частоты можно получить с помощью колебательного контура. Для того, чтобы частота была больше, необходимо уменьшить индуктивность и емкость контура:
Таким условиям отвечает открытый колебательный контур :
- Для уменьшения емкости С необходимо увеличить расстояние между пластинами и уменьшить площадь пластин. Самая маленькая емкость – это простой провод.
- Для того чтобы снизить индуктивность L необходимо уменьшить количество витков в катушке. В результате выходит обычный провод, который получил название открытого колебательного контура.
Для получения электромагнитных волн Г. Герц использовал устройство, называемое сейчас вибратор Герца. Это устройство представляет собой открытый колебательный контур.
Схема опыта Герца
Первоначально вибратор представлял собой два соосных медных стержня диаметром 5 мм и длиной по 1,3 м; на концах стержней были насажены по одному латунному маленькому (диаметром 3 см) шарику и по одной большой цинковой сфере или полусфере (диаметром 30 см) либо квадратной пластине. Между маленькими шариками оставался искровой промежуток в 7. 7,5 мм. К медным стержням вблизи маленьких шариков были прикреплены обмотки катушки Румкорфа – преобразователя постоянного тока низкого напряжения в переменный ток высокого напряжения.
При импульсах постоянного тока, вследствие действия прерывателя, в гальванической цепи вторичной обмотки катушки между шариками проскакивали искры и в окружающую среду излучались электромагнитные волны. Перемещением больших сфер (или пластин) вдоль стержней регулировались индуктивность и емкость цепи, определяющие частоты колебаний (и соответственно длины волн) согласно формуле Томсона.
Чтобы улавливать излучаемые волны, Герц сделал простой резонатор, представляющий собой проволочное незамкнутое кольцо диаметром 70 см или прямоугольную незамкнутую рамку 125х80 см, также с латунными шариками на концах и также с малым искровым регулируемым промежутком.
Вибратор и резонатор Герца поражают своей остроумной простотой и высокой эффективностью. Изменяя размеры и положение резонатора, ученый настраивал его на частоту колебаний вибратора. В разряднике резонатора проскакивали маленькие искры в те самые моменты, когда происходили разряды между шариками вибратора. Интенсивность искрообразования была очень мала и наблюдения приходилось вести в темноте.
Экспериментальное подтверждение свойств электромагнитных волн
Рупоры располагают друг против друга и, добившись хорошей слышимости звука в громкоговорителе, помещают между рупорами различные диэлектрические тела. При этом наблюдается уменьшение громкости.
При расположении цинкового экрана в точке пересечения оптических осей, когда перпендикуляр к его поверхности совпадал с биссектрисой угла, возникало искрообразование. Аналогичные результаты получались при замене сплошного экрана проволочной решеткой. Опыты показали, что отражение электромагнитных волн происходит по тем же законам, что и отражение света, как это и следует из теории Максвелла.
Для изучения вопроса о преломлении электромагнитных волн Герц изготовил асфальтовую призму высотой 1,5 м весом в 1,2 т с поперечным сечением в виде равнобедренного треугольника со сторонами 1,2 м. Призма образовывала преломляющий угол 30°. Помещение призмы между зеркалами, стоящими одно против другого, вызывало полное прекращение искры в резонаторе. Искрообразование восстанавливалось при перемещении приемного зеркала на угол 22° по направлению к основанию призмы. Вычисленный коэффициент преломления асфальта 1,69 был близок к истинному значению.
Поперечность электромагнитных волн
Колебания напряженности электрического поля волны, выходящей из рупора, происходят в определенной плоскости, а колебания вектора магнитной индукции – поляризованную в определенном направлении волну. Это можно обнаружить, повернув передающий или приемный рупор на 90° относительно оси рупора. Звук при этом исчезает.
Поляризацию наблюдают, помещая между генератором и приемником решетку из параллельных металлических проволочек. Решетку располагают так, чтобы проволочки были горизонтальными или вертикальными. При одном из этих положений, когда электрический вектор параллелен проволочкам, в них возбуждаются токи, в результате чего решетка отражает волны подобно сплошному металлическому листу. Когда же E перпендикулярен проволочкам, то токи в них не возбуждаются, и электромагнитная волна проходит.
Интерференция электромагнитных волн
На опытах с генератором СВЧ можно наблюдать такое важнейшее волновое явление, как интерференция. Генератор и приемник располагают друг против друга. Затем подводят снизу металлический лист в горизонтальном положении. Постепенно поднимая лист, обнаруживают поочередное ослабление и усиление звука.
Явление объясняется следующим образом. Волна из рупора генератора частично попадает непосредственно в приемный рупор. Другая же ее часть отражается от металлического листа. Меняя расположение листа, мы изменяем разность хода прямой и отраженной волн. Вследствие этого волны либо усиливают, либо ослабляют друг друга в зависимости от того, равна ли разность хода целому числу волн или нечетному числу полуволн. Можно наблюдать также дифракцию электромагнитных волн.