Естественные и искусственные магниты
Среди железных руд, добываемых для металлургической промышленности, встречается руда, называемая магнитным железняком. Эта руда обладает свойством притягивать к себе железные предметы.
Кусок такой железной руды называется естественным магнитом , а проявляемое им свойство притяжения — магнетизмом .
В наше время явление магнетизма используется чрезвычайно широко в различных электрических установках. Однако теперь применяют не естественные, а так называемые искусственные магниты .
Искусственные магниты изготовляются из специальных сортов стали. Кусок такой стали особым образом намагничивают, после чего он приобретает, магнитные свойства, т. е. становится постоянным магнитом.
Форма постоянных магнитов может быть самая разнообразная в зависимости от их назначения.
У постоянного магнита силами притяжения обладают только его полюсы. Конец магнита, обращенный к северу, условились называть северным полюсом магнита , а конец, обращенный к югу, — южным полюсом магнита . Каждый постоянный магнит имеет два полюса: северный и южный. Северный полюс магнита обозначается буквой С или N, южный полюс — буквой Ю или S.
Магнит притягивает к себе железо, сталь, чугун, никель, кобальт. Все эти тела называются магнитными телами. Все же остальные тела, которые не притягиваются к магниту, называются немагнитными телами.
Строение магнита. Намагничивание
Любое тело, в том числе и магнитное, состоит из мельчайших частиц — молекул. В отличие от молекул немагнитных тел, молекулы магнитного тела обладают магнитными свойствами, представляя собой молекулярные магнитики. Внутри магнитного тела эти молекулярные магнитики расположены своими осями в различных направлениях, в результате чего само тело никаких магнитных свойств не проявляет. Но если эти магнитики заставить повернуться вокруг своих осей так, чтобы они своими северными полюсами были обращены в одну сторону, а южными в другую, то тело приобретет магнитные свойства, т. е. станет магнитом.
Процесс, в результате которого магнитное тело приобретает свойства магнита, называется намагничиванием . При изготовлении постоянных магнитов намагничивание производится при помощи электрического тока. Но можно намагнитить тело и другим способом, пользуясь обычным постоянным магнитом.
Если прямолинейный магнит распилить по нейтральной линии, то получатся два самостоятельных магнита, причем полярность концов магнита сохранится, а на концах, полученных в результате распила, возникнут противоположные полюсы.
Каждый из полученных магнитов можно также разделить на два магнита, и сколько бы мы ни продолжали такое деление, мы всегда будем получать самостоятельные магниты с двумя полюсами. Получить же брусок с одним магнитным полюсом невозможно. Этот пример подтверждает то положение, что магнитное тело состоит из множества молекулярных магнитиков.
Магнитные тела отличаются одно от другого степенью подвижности молекулярных магнитиков. Есть тела, которые быстро намагничиваются и так же быстро размагничиваются. И, наоборот, есть тела, которые намагничиваются медленно, но зато долго сохраняют в себе магнитные свойства.
Так железо быстро намагничивается под действием постороннего магнита, но так же быстро и размагничивается, т. е. теряет магнитные свойства при удалении магнита. Сталь же, намагнитившись раз, длительное время сохраняет в себе магнитные свойства, т. е. становится постоянным магнитом.
Свойство железа быстро намагничиваться и размагничиваться объясняется тем, что молекулярные магнитики железа чрезвычайно подвижны, они легко поворачиваются под действием внешних магнитных сил, но зато так же быстро приходят в прежнее беспорядочное положение при удалении намагничивающего тела.
Однако в железе небольшая часть магнитиков и после удаления постоянного магнита все же продолжает оставаться некоторое время в положении, которое они приняли при намагничивании. Следовательно, железо после намагничивания сохраняет в себе очень слабые магнитные свойства. Это подтверждается тем, что при удалении железной пластинки от полюса магнита не все опилки упали с ее конца — небольшая часть их осталась еще притянутой к пластинке.
Свойство стали оставаться длительное время намагниченной объясняется тем, что молекулярные магнитики стали с трудом поворачиваются в нужном направлении при намагничивании, но зато сохраняют на продолжительное время установившееся положение и после удаления намагничивающего тела.
Способность магнитного тела проявлять магнитные свойства после намагничивания называется остаточным магнетизмом.
Явление остаточного магнетизма вызвано тем, что в магнитном теле действует так называемая задерживающая сила, которая удерживает молекулярные магнитики в положении, занятом ими при намагничивании.
В железе действие задерживающей силы очень слабое, в результате чего оно быстро размагничивается и имеет очень маленький остаточный магнетизм.
Свойство железа быстро намагничиваться и размагничиваться чрезвычайно широко используется в электротехнике. Достаточно сказать, что сердечники всех электромагнитов, применяемых в электрических аппаратах, изготовляются из специального железа, обладающего крайне малым остаточным магнетизмом.
Сталь обладает большой задерживающей силой, благодаря чему в ней сохраняется свойство магнетизма. Поэтому постоянные магниты изготовляются из специальных стальных сплавов.
На свойствах постоянного магнита отрицательно сказываются удары, сотрясения и резкие колебания температуры. Если, например, постоянный магнит нагреть докрасна и затем дать остыть, то он совершенно потеряет свои магнитные свойства. Точно так же, если подвергать постоянный магнит ударам, то сила его притяжения заметно уменьшится.
Объясняется это тем, что при сильном нагреве или ударах преодолевается действие задерживающей силы и тем самым нарушается упорядоченное расположение молекулярных магнитиков. Вот почему с постоянными магнитами и приборами, имеющими постоянные магниты, надо обращаться с осторожностью.
Магнитные силовые линии. Взаимодействие полюсов магнитов
Вокруг любого магнита существует так называемое магнитное поле.
Магнитным полем называется пространство, в котором действуют магнитные силы . Магнитным полем постоянного магнита является та часть пространства, в котором действуют поля прямолинейного магнита магнитные силы этого магнита.
Магнитные силы магнитного поля действуют в определенных направлениях . Направления действия магнитных сил условились называть магнитными силовыми линиями . Этим термином широко пользуются при изучении электротехники, однако надо помнить, что магнитные силовые линии не материальны: это — условное понятие, введенное только для облегчения понимания свойств магнитного поля.
Форма магнитного поля , т. е, расположение в пространстве магнитных силовых линий, зависит от формы самого магнита.
Магнитные силовые линии обладают рядом свойств: они всегда замкнуты, никогда не пересекаются, имеют стремление пойти по кратчайшему пути и оттолкнуться друг от друга, если направлены в одну сторону. Принято считать, что силовые линии выходят из северного полюса магнита и входят в его южный полюс; внутри магнита они имеют направление от южного полюса к северному.
Одноименные магнитные полюсы отталкиваются, разноименные магнитные полюса притягиваются.
В правильности обоих выводов нетрудно убедиться практически. Возьмите компас и поднесите к ней один из полюсов прямолинейного магнита, например северный. Вы увидите, что стрелка моментально повернется своим южным концом к северному полюсу магнита. Если быстро повернуть магнит на 180°, то сразу же повернется на 180° и магнитная стрелка, т. е. ее северный конец будет обращен к южному полюсу магнита.
Магнитная индукция. Магнитный поток
Сила воздействия (притяжения) постоянного магнита на магнитное тело убывает с увеличением расстояния между полюсом магнита и этим телом. Наибольшую силу притяжения магнит проявляет непосредственно у его полюсов, т. е. как раз там, где наиболее густо расположены магнитные силовые линии. По мере удаления от полюса густота силовых линий уменьшается, они располагаются все реже и реже, вместе с этим ослабевает и сила притяжения магнита.
Таким образом, сила притяжения магнита в разных точках магнитного поля неодинакова и характеризуется густотой силовых линий. Для характеристики магнитного поля в различных его точках вводится величина, называемая магнитной индукцией поля .
Магнитная индукция поля численно равна количеству силовых линий, проходящих через площадку 1 см2, расположенную перпендикулярно их направлению.
Значит, чем больше густота силовых линий в данной точке поля, тем больше в этой точке магнитная индукция.
Общее количество магнитных силовых линий, проходящих через какую-либо площадь, называется магнитным потоком.
Магнитный поток обозначается буквой Ф и связан с магнитной индукцией следующим соотношением:
где Ф – магнитный поток, В – магнитная индукция поля; S – площадь, пронизываемая данным магнитным потоком.
Эта формула справедлива только при условии, если площадь S расположена перпендикулярно направлению магнитного потока. В противном случае величина магнитного потока будет зависеть еще и от того, под каким углом расположена площадь S, и тогда формула примет более сложный вид.
Магнитный поток постоянного магнита определяется полным числом силовых линий, проходящих через поперечное сечение магнита. Чем больше магнитный поток постоянного магнита, тем большей силой притяжения этот магнит обладает.
Магнитный поток постоянного магнита зависит от качества стали, из которой магнит изготовлен, от размеров самого магнита и от степени его намагничивания.
Свойство тела пропускать через себя магнитный поток называется магнитной проницаемостью . Магнитному потоку легче пройти через воздух, чем через немагнитное тело.
Чтобы иметь возможность сравнивать различные вещества по их магнитной проницаемости, принято считать магнитную проницаемость воздуха равной единице.
Вещества, у которых магнитная проницаемость меньше единицы, называются диамагнитными . К ним относятся медь, свинец, серебро и др.
Алюминий, платина, олово и др. обладают магнитной проницаемостью немного больше единицы и носят название парамагнитных веществ.
Вещества, магнитная проницаемость которых значительно больше единицы (измеряется тысячами), называются ферромагнитными. К ним относятся никель, кобальт, сталь, железо и др. Из этих веществ и их сплавов делают всевозможные магнитные и электромагнитные приборы и детали различных электрических машин.
Практический интерес для техники связи представляют специальные сплавы железа с никелем, получившие название пермаллоев .
Часто бывает, что задачу не удается решить из-за того, что под рукой нет нужной формулы. Выводить формулу с самого начала – дело не самое быстрое, а у нас на счету каждая минута.
Ниже мы собрали вместе основные формулы по теме «Электричество и Магнетизм». Теперь, решая задачи, вы сможете пользоваться этим материалом как справочником, чтобы не терять время на поиски нужной информации.
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Магнетизм: определение
Магнетизм – это взаимодействие движущихся электрических зарядов, происходящее посредством магнитного поля.
Поле – особая форма материи. В рамках стандартной модели существует электрическое, магнитное, электромагнитные поля, поле ядерных сил, гравитационное поле и поле Хиггса. Возможно, есть и другие гипотетические поля, о которых мы пока что можем только догадываться или не догадываться вовсе. Сегодня нас интересует магнитное поле.
Магнитная индукция
Так же, как заряженные тела создают вокруг себя электрическое поле, движущиеся заряженные тела порождают магнитное поле. Магнитное поле не только создается движущимися зарядами (электрическим током), но еще и действует на них. По сути магнитное поле можно обнаружить только по действию на движущиеся заряды. А действует оно на них с силой, называемой силой Ампера, о которой речь пойдет позже.
Изображение магнитного поля при помощи силовых линий
Прежде чем мы начнем приводить конкретные формулы, нужно рассказать про магнитную индукцию.
Магнитная индукция – это силовая векторная характеристика магнитного поля.
Она обозначается буквой B и измеряется в Тесла (Тл). По аналогии с напряженностью для электрического поля Е магнитная индукция показывает, с какой силой магнитное поле действует на заряд.
Кстати, вы найдете много интересных фактов на эту тему в нашей статье про теорию магнитного поля и интересные факты о магнитном поле Земли.
Как определять направление вектора магнитной индукции? Здесь нас интересует практическая сторона вопроса. Самый частый случай в задачах – это магнитное поле, создаваемое проводником с током, который может быть либо прямым, либо в форме окружности или витка.
Для определения направления вектора магнитной индукции существует правило правой руки. Приготовьтесь задействовать абстрактное и пространственное мышление!
Если взять проводник в правую руку так, что большой палец будет указывать на направление тока, то загнутые вокруг проводника пальцы покажут направление силовых линий магнитного поля вокруг проводника. Вектор магнитной индукции в каждой точке будет направлен по касательной к силовым линиям.
Сила Ампера
Представим, что есть магнитное поле с индукцией B. Если мы поместим в него проводник длиной l, по которому течет ток силой I, то поле будет действовать на проводник с силой:
Это и есть сила Ампера. Угол альфа – угол между направлением вектора магнитной индукции и направлением тока в проводнике.
Направление силы Ампера определяется по правилу левой руки: если расположить левую руку так, чтобы в ладонь входили линии магнитной индукции, а вытянутые пальцы указывали бы направление тока, отставленный большой палец укажет направление силы Ампера.
Сила Лоренца
Мы выяснили, что поле действует на проводник с током. Но если это так, то изначально оно действует отдельно на каждый движущийся заряд. Сила, с которой магнитное поле действует на движущийся в нем электрический заряд, называется силой Лоренца. Здесь важно отметить слово «движущийся», так на неподвижные заряды магнитное поле не действует.
Итак, частица с зарядом q движется в магнитном поле с индукцией В со скоростью v, а альфа – это угол между вектором скорости частицы и вектором магнитной индукции. Тогда сила, которая действует на частицу:
Как определить направление силы Лоренца? По правилу левой руки. Если вектор индукции входит в ладонь, а пальцы указывают на направление скорости, то отогнутый большой палец покажет направление силы Лоренца. Отметим, что так направление определяется для положительно заряженных частиц. Для отрицательных зарядов полученное направление нужно поменять на противоположное.
Если частица массы m влетает в поле перпендикулярно линиям индукции, то она будет двигаться по окружности, а сила Лоренца будет играть роль центростремительной силы. Радиус окружности и период обращения частицы в однородном магнитном поле можно найти по формулам:
Взаимодействие токов
Рассмотрим два случая. Первый – ток течет по прямому проводу. Второй – по круговому витку. Как мы знаем, ток создает магнитное поле.
В первом случае магнитная индукция провода с током I на расстоянии R от него считается по формуле:
Мю – магнитная проницаемость вещества, мю с индексом ноль – магнитная постоянная.
Во втором случае магнитная индукция в центре кругового витка с током равна:
Также при решении задач может пригодиться формула для магнитного поля внутри соленоида. Соленоид – это катушка, то есть множество круговых витков с током.
Пусть их количество – N, а длина самого соленоилда – l. Тогда поле внутри соленоида вычисляется по формуле:
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Магнитный поток и ЭДС
Если магнитная индукция – векторная характеристика магнитного поля, то магнитный поток – скалярная величина, которая также является одной из самых важных характеристик поля. Представим, что у нас есть какая-то рамка или контур, имеющий определенную площадь. Магнитный поток показывает, какое количество силовых линий проходит через единицу площади, то есть характеризует интенсивность поля. Измеряется в Веберах (Вб) и обозначается Ф.
S – площадь контура, альфа – угол между нормалью (перпендикуляром) к плоскости контура и вектором В.
При изменении магнитного потока через контур в контуре индуцируется ЭДС, равная скорости изменения магнитного потока через контур. Кстати, подробнее о том, что такое электродвижущая сила, вы можете почитать в еще одной нашей статье.
По сути формула выше – это формула для закона электромагнитной индукции Фарадея. Напоминаем, что скорость изменения какой-либо величины есть не что иное, как ее производная по времени.
Для магнитного потока и ЭДС индукции также справедливо обратное. Изменение тока в контуре приводит к изменению магнитного поля и, соответственно, к изменению магнитного потока. При этом возникает ЭДС самоиндукции, которая препятствует изменению тока в контуре. Магнитный поток, который пронизывает контур с током, называется собственным магнитным потоком, пропорционален силе тока в контуре и вычисляется по формуле:
L – коэффициент пропорциональности, называемый индуктивностью, который измеряется в Генри (Гн). На индуктивность влияют форма контура и свойства среды. Для катушки с длиной l и с числом витков N индуктивность рассчитывается по формуле:
Формула для ЭДС самоиндукции:
Энергия магнитного поля
Электроэнергия, ядерная энергия, кинетическая энергия. Магнитная энергия – одна из форм энергии. В физических задачах чаще всего нужно рассчитывать энергию магнитного поля катушки. Магнитная энергия катушки с током I и индуктивностью L равна:
Объемная плотность энергии поля:
Конечно, это не все основные формулы раздела физики « электричество и магнетизм » , однако они часто могут помочь при решении стандартных задач и расчетах. Если же вам попалась задача со звездочкой, и вы никак не можете подобрать к ней ключ, упростите себе жизнь и обратитесь за решением в сервис студенческой помощи.
Теория к заданию 13 из ЕГЭ по физике
Напряженность электрического поля
Напряженность электрического поля — векторная характеристика поля, сила, действующая на единичный покоящийся в данной системе отсчета электрический заряд.
Напряженность определяется по формуле:
где $E↖<→>$ — напряженность поля; $F↖<→>$ — сила, действующая на помещенный в данную точку поля заряд $q$. Направление вектора $E↖<→>$ совпадает с направлением силы, действующей на положительный заряд, и противоположно направлению силы, действующей на отрицательный заряд.
Единицей напряженности в СИ является вольт на метр (В/м).
Напряженность поля точечного заряда. Согласно закону Кулона, точечный заряд $q_0$ действует на другой заряд $q$ с силой, равной
Модуль напряженности поля точечного заряда $q_0$ на расстоянии $r$ от него равен
Вектор напряженности в любой точке электрического поля направлен вдоль прямой, соединяющей эту точку и заряд.
Силовые линии электрического поля
Электрическое поле в пространстве принято представлять силовыми линиями. Понятие о силовых линиях ввел М. Фарадей при исследовании магнетизма. Затем это понятие было развито Дж. Максвеллом в исследованиях по электромагнетизму.
Силовая линия, или линия напряженности электрического поля, — это линия, касательная к которой в каждой ее точке совпадает с направлением силы, действующей на положительный точечный заряд, находящийся в этой точке поля.
Линии напряженности положительно заряженного шарика;
Линии напряженности двух разноименно заряженных шариков;
Линии напряженности двух одноименно заряженных шариков
Линии напряженности двух пластин, заряженных разными по знаку, но одинаковыми по абсолютной величине зарядами.
Линии напряженности на последнем рисунке почти параллельны в пространстве между пластинами, и плотность их одинакова. Это говорит о том, что поле в этой области пространства однородно. Однородным называется электрическое поле, напряженность которого одинакова во всех точках пространства.
В электростатическом поле силовые линии не замкнуты, они всегда начинаются на положительных зарядах и заканчиваются на отрицательных зарядах. Они нигде не пересекаются, пересечение силовых линий говорило бы о неопределенности направления напряженности поля в точке пересечения. Плотность силовых линий больше вблизи заряженных тел, где напряженность поля больше.
Поле заряженного шара. Напряженность поля заряженного проводящего шара на расстоянии от центра шара, превышающем его радиус $r≥R$, определяется по той же формуле, что и поля точечного заряда. Об этом свидетельствует распределение силовых линий, аналогичное распределению линий напряженности точечного заряда.
Заряд шара распределен равномерно по его поверхности. Внутри проводящего шара напряженность поля равна нулю.
Магнитное поле. Взаимодействие магнитов
Явление взаимодействия постоянных магнитов (установление магнитной стрелки вдоль магнитного меридиана Земли, притяжение разноименных полюсов, отталкивание одноименных) известно с древних времен и систематически исследовано У. Гильбертом (результаты опубликованы в 1600 г. в его трактате «О магните, магнитных телах и о большом магните — Земле»).
Природные (естественные) магниты
Магнитные свойства некоторых природных минералов были известны уже в древности. Так, имеются письменные свидетельства более чем 2000-летней давности об использовании в Китае естественных постоянных магнитов в качестве компасов. О притяжении и отталкивании магнитов и намагничивании ими железных опилок упоминается в трудах древнегреческих и римских ученых (например, в поэме «О природе вещей» Лукреция Кара).
Природные магниты представляют собой куски магнитного железняка (магнетита), состоящего из $FeO$ (31 %) и $Fe_2O$ (69 %). Если такой кусок минерала поднести к мелким железным предметам — гвоздям, опилкам, тонкому лезвию и т. д., они к нему притянутся.
Искусственные постоянные магниты
Постоянный магнит — это изделие из материала, являющегося автономным (самостоятельным, изолированным) источником постоянного магнитного поля.
Искусственные постоянные магниты изготавливают из специальных сплавов, в которые входят железо, никель, кобальт и др. Эти металлы приобретают магнитные свойства (намагничиваются), если их поднести к постоянным магнитам. Поэтому, чтобы изготовить из них постоянные магниты, их специально держат в сильных магнитных полях, после чего они сами становятся источниками постоянного магнитного поля и способны длительное время сохранять магнитные свойства.
На рисунке изображены дугообразный и полосовой магниты.
На рис. даны картины магнитных полей этих магнитов, полученных методом, который впервые применил в своих исследованиях М. Фарадей: с помощью железных опилок, рассыпанных на листе бумаги, на котором лежит магнит. У каждого магнита есть два полюса — это места наибольшего сгущения магнитных силовых линий (их называют также линиями магнитного поля, или линиями магнитной индукции поля). Это места, к которым сильнее всего притягиваются железные опилки. Один из полюсов принято называть северным (($N$), другой — южным ($S$). Если поднести два магнита друг к другу одноименными полюсами, можно увидеть, что они отталкиваются, а если разноименными — притягиваются.
На рис. наглядно видно, что магнитные линии магнита — замкнутые линии. Показаны силовые линии магнитного поля двух магнитов, обращенных друг к другу одноименными и разноименными полюсами. Центральная часть этих картин напоминает картины электрических полей двух зарядов (разноименных и одноименных). Однако существенным различием электрического и магнитного полей является то, что линии электрического поля начинаются на зарядах и заканчиваются на них. Магнитных же зарядов в природе не существует. Линии магнитного поля выходят из северного полюса магнита и входят в южный, они продолжаются и в теле магнита, т. е., как было сказано выше, являются замкнутыми линиями. Поля, силовые линии которых замкнуты, называются вихревыми. Магнитное поле — это вихревое поле (в этом его отличие от электрического).
Применение магнитов
Самым древним магнитным прибором является всем хорошо известный компас. В современной технике магниты используются очень широко: в электродвигателях, в радиотехнике, в электроизмерительной аппаратуре и т. д.
Магнитное поле Земли
Земной шар является магнитом. Как у всякого магнита, у него есть свое магнитное поле и свои магнитные полюсы. Именно поэтому стрелка компаса ориентируется в определенном направлении. Понятно, куда именно должен указывать северный полюс магнитной стрелки, ведь притягиваются разноименные полюсы. Поэтому северный полюс магнитной стрелки указывает на южный магнитный полюс Земли. Этот полюс находится на севере земного шара, несколько в стороне от северного географического полюса (на острове Принца Уэльского — около $75°$ северной широты и $99°$ западной долготы, на расстоянии примерно $2100$ км от северного географического полюса).
При приближении к северному географическому полюсу силовые линии магнитного поля Земли все под большим углом наклоняются к горизонту, и в области южного магнитного полюса становятся вертикальными.
Северный магнитный полюс Земли находится вблизи южного географического полюса, а именно на $66.5°$ южной широты и $140°$ восточной долготы. Здесь силовые линии магнитного поля выходят из Земли.
Другими словами, магнитные полюсы Земли не совпадают с ее географическими полюсами. Поэтому направление магнитной стрелки не совпадает с направлением географического меридиана, и магнитная стрелка компаса лишь приблизительно показывает направление на север.
На стрелку компаса могут влиять также некоторые природные явления, например, магнитные бури, которые являются временными изменениями магнитного поля Земли, связанными с солнечной активностью. Солнечная активность сопровождается выбросом с поверхности Солнца потоков заряженных частиц, в частности, электронов и протонов. Эти потоки, движущиеся с большой скоростью, создают свое магнитное поле, взаимодействующее с магнитным полем Земли.
На земном шаре (кроме кратковременных изменений магнитного поля) встречаются области, в которых наблюдается постоянное отклонение направления магнитной стрелки от направления магнитной линии Земли. Это области магнитной аномалии (от греч. anomalia — отклонение, ненормальность). Одной из самых больших таких областей является Курская магнитная аномалия. Причиной аномалий являются огромные залежи железной руды на сравнительно небольшой глубине.
Земное магнитное поле надежно защищает поверхность Земли от космического излучения, действие которого на живые организмы разрушительно.
Полеты межпланетных космических станций и кораблей позволили установить, что у Луны и планеты Венера отсутствует магнитное поле, а у планеты Марс оно очень слабое.
Опыты Эрстедаи Ампера. Индукция магнитного поля
В 1820 г. датский ученый Г. X. Эрстед обнаружил, что магнитная стрелка, помещенная вблизи проводника, по которому течет ток, поворачивается, стремясь расположиться перпендикулярно к проводнику.
Схема опыта Г. X. Эрстеда изображена на рисунке. Проводник, включенный в цепь источника тока, расположен над магнитной стрелкой параллельно ее оси. При замыкании цепи магнитная стрелка отклоняется от своего первоначального положения. При размыкании цепи магнитная стрелка возвращается в свое первоначальное положение. Отсюда следует, что проводник с током и магнитная стрелка взаимодействуют друг с другом. На основании этого опыта можно сделать вывод о существовании магнитного поля, связанного с протеканием тока в проводнике и о вихревом характере этого поля. Описанный опыт и его результаты явились важнейшей научной заслугой Эрстеда.
В том же году французский физик Ампер, которого заинтересовали опыты Эрстеда, обнаружил взаимодействие двух прямолинейных проводников с током. Оказалось, что если токи в проводниках текут в одну сторону, т. е. параллельны, то проводники притягиваются, если в противоположные стороны (т. е. антипараллельны), то отталкиваются.
Взаимодействия между проводниками с током, т. е. взаимодействия между движущимися электрическими зарядами, называют магнитными, а силы, с которыми проводники с током действуют друг на друга, — магнитными силами.
Согласно теории близкодействия, которой придерживался М. Фарадей, ток в одном из проводников не может непосредственно влиять на ток в другом проводнике. Аналогично случаю с неподвижными электрическими зарядами, вокруг которых существует электрическое поле, был сделан вывод, что в пространстве, окружающем токи, существует магнитное поле, которое действует с некоторой силой на другой проводник с током, помещенный в это поле, либо на постоянный магнит. В свою очередь, магнитное поле, создаваемое вторым проводником с током, действует на ток в первом проводнике.
Подобно тому как электрическое поле обнаруживается по его воздействию на пробный заряд, внесенный в это поле, магнитное поле можно обнаружить по ориентирующему действию магнитного поля на рамку с током малых (по сравнению с расстояниями, на которых магнитное поле заметно меняется) размеров.
Провода, подводящие ток к рамке, следует сплести (или расположить близко друг к другу), тогда результирующая сила, действующая со стороны магнитного поля на эти провода, будет равна нулю. Силы же, действующие на такую рамку с током, будут ее поворачивать, так что ее плоскость установится перпендикулярно линиям индукции магнитного поля. В примере, рамка повернется так, чтобы проводник с током оказался в плоскости рамки. При изменении направления тока в проводнике рамка повернется на $180°$. В поле между полюсами постоянного магнита рамка повернется плоскостью перпендикулярно магнитным силовым линиям магнита.
Магнитная индукция
Магнитная индукция ($В↖<→>$) — это векторная физическая величина, характеризующая магнитное поле.
За направление вектора магнитной индукции $В↖<→>$ принимается:
1) направление от южного полюса $S$ к северному полюсу $N$ магнитной стрелки, свободно устанавливающейся в магнитном поле, или
2) направление положительной нормали к замкнутому контуру с током на гибком подвесе, свободно устанавливающемся в магнитном поле. Положительной считается нормаль, направленная в сторону перемещения острия буравчика (с правой нарезкой), рукоятку которого вращают по направлению тока в рамке.
Ясно, что направления 1) и 2) совпадают, что было установлено еще опытами Ампера.
Что касается величины магнитной индукции (т. е. ее модуля) $В$, которая могла бы характеризовать силу действия поля, то экспериментами было установлено, что максимальная сила $F$, с которой поле действует на проводник с током (помещенный перпендикулярно линиям индукции магнитного поля), зависит от силы тока $I$ в проводнике и от его длины $∆l$ (пропорциональна им). Однако сила, действующая на элемент тока (единичной длины и силы тока), зависит только от самого поля, т. е. отношение $
Индукция магнитного поля в данной точке равна отношению максимальной силы, действующей на проводник с током, к длине проводника и силе тока в проводнике, помещенном в эту точку.
Чем больше магнитная индукция в данной точке поля, тем с большей силой будет действовать поле в этой точке на магнитную стрелку или движущийся электрический заряд.
Единицей магнитной индукции в СИ является тесла (Тл), названная в честь сербского электротехника Николы Теслы. Как видно из формулы, $1$ Тл $=l
Если имеется несколько различных источников магнитного поля, векторы индукции которых в данной точке пространства равны $<В_1>↖<→>, <В_2>↖<→>, <В_3>↖<→>. $, то, согласно принципу суперпозиции полей, индукция магнитного поля в этой точке равна сумме векторов индукции магнитных полей, создаваемых каждым источником.
Линии магнитной индукции
Для наглядного представления магнитного поля М. Фарадей ввел понятие магнитных силовых линий, которые он неоднократно демонстрировал в своих опытах. Картина силовых линий легко может быть получена с помощью железных стружек, насыпанных на картон. На рисунке представлены: линии магнитной индукции прямого тока, соленоида, кругового тока, прямого магнита.
Линиями магнитной индукции, или магнитными силовыми линиями, или просто магнитными линиями называют линии, касательные к которым в любой точке совпадают с направлением вектора магнитной индукции $В↖<→>$ в этой точке поля.
Если вместо железных опилок вокруг длинного прямолинейного проводника с током поместить маленькие магнитные стрелки, то можно увидеть не только конфигурацию силовых линий (концентрические окружности), но и направление силовых линий (северный полюс магнитной стрелки указывает направление вектора индукции в данной точке).
Направление магнитного поля прямого тока можно определить по правилу правого буравчика.
Если вращать рукоятку буравчика так, чтобы поступательное движение острия буравчика указывало направление тока, то направление вращения рукоятки буравчика укажет направление силовых линий магнитного поля тока.
Направление магнитного поля прямого тока можно определять также и с помощью первого правила правой руки.
Если охватить проводник правой рукой, направив отогнутый большой палец по направлению тока, то кончики остальных пальцев в каждой точке покажут направление вектора индукции в этой точке.
Вихревое поле
Линии магнитной индукции являются замкнутыми, это свидетельствует о том, что в природе нет магнитных зарядов. Поля, силовые линии которых замкнуты, называют вихревыми полями. То есть магнитное поле — это вихревое поле. Этим оно отличается от электрического поля, создаваемого зарядами.
Соленоид
Соленоид — это проволочная спираль с током.
Соленоид характеризуется числом витков на единицу длины $n$, длиной $l$ и диаметром $d$. Толщина провода в соленоиде и шаг спирали (винтовой линии) малы по сравнению с его диаметром $d$ и длиной $l$. Термин «соленоид» применяют и в более широком значении — так называют катушки с произвольным сечением (квадратный соленоид, прямоугольный соленоид), и не обязательно цилиндрической формы (тороидальный соленоид). Различают длинный соленоид ($l>>d$) и короткий ($l 1$ (у платины $μ = 1.00036$); у ферромагнетиков $μ >> 1$ (железо, никель, кобальт).
Диамагнетики отталкиваются от магнита, парамагнетики — притягиваются. По этим признакам их можно отличить друг от друга. У большинства веществ магнитная проницаемость практически не отличается от единицы, только у ферромагнетиков намного превосходит ее, достигая нескольких десятков тысяч единиц.
Ферромагнетики. Наиболее сильные магнитные свойства проявляют ферромагнетики. Магнитные поля, создаваемые ферромагнетиками, намного сильнее внешнего намагничивающего поля. Правда, магнитные поля ферромагнетиков создаются не вследствие обращения электронов вокруг ядер — орбитального магнитного момента, а вследствие собственного вращения электрона — собственного магнитного момента, называемого спином.
Температура Кюри ($Т_с$) — это температура, выше которой ферромагнитные материалы теряют свои магнитные свойства. Для каждого ферромагнетика она своя. Например, для железа $Т_с = 753°$С, для никеля $Т_с = 365°$С, для кобальта $Т_с = 1000°$ С. Существуют ферромагнитные сплавы, у которых $Т_с 0$), или уменьшается ($∆Ф 0$,и иметь одинаковое с ними направление, если $∆Ф